3 research outputs found

    Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications

    Get PDF
    An optimized design with real-time and multiple realistic constraints in complex engineering systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments, the approximation accuracy is directly affected by the parameters like node density and coverage. We propose a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential evolution operator is used to circumvent group moves in small ranges and falling into the local optima and improves global searchability. The cross operator is employed to promote information interchange among individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary process's continuance and adding proactive and reactive features. The proposed algorithm's performance is verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of fitness function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high precision and faster convergence speed. The average location error is substantially reduced for the smart parking IoT application

    A Novel Enhanced Quantum PSO for Optimal Network Configuration in Heterogeneous Industrial IoT

    Get PDF
    A novel enhanced quantum particle swarm optimization algorithm for IIoT deployments is proposed. It provides enhanced connectivity, reduced energy consumption, and optimized delay. We consider heterogeneous scenarios of network topologies for optimal path configuration by exploring and exploiting the hunts. It uses multiple inputs from heterogeneous IIoT into quantum and bio-inspired optimization techniques. The differential evolution operator and crossover operations are used for information interchange among the nodes to avoid trapping into local minima. The different topology scenarios are simulated to study the impact of pp -degrees of connectivity concerning objective functions’ evaluation and compared with existing techniques. The results demonstrate that our algorithm consumes a minimum of 30.3% lesser energy. Furthermore, it offers improved searching precision and convergence swiftness in the possible search space for pp -disjoint paths and reduces the delay by a minimum of 26.7%. Our algorithm also improves the throughput by a minimum of 29.87% since the quantum swarm inclines to generate additional diverse paths from multiple source nodes to the gateway

    Exploring Computing Paradigms for Electric Vehicles: From Cloud to Edge Intelligence, Challenges and Future Directions

    No full text
    Electric vehicles are widely adopted globally as a sustainable mode of transportation. With the increased availability of onboard computation and communication capabilities, vehicles are moving towards automated driving and intelligent transportation systems. The adaption of technologies such as IoT, edge intelligence, 5G, and blockchain in vehicle architecture has increased possibilities towards efficient and sustainable transportation systems. In this article, we present a comprehensive study and analysis of the edge computing paradigm, explaining elements of edge AI. Furthermore, we discussed the edge intelligence approach for deploying AI algorithms and models on edge devices, which are typically resource-constrained devices located at the edge of the network. It mentions the advantages of edge intelligence and its use cases in smart electric vehicles. It also discusses challenges and opportunities and provides in-depth analysis for optimizing computation for edge intelligence. Finally, it sheds some light on the research roadmap on AI for edge and AI on edge by dividing efforts into topology, content, service segments, model adaptation, framework design, and processor acceleration, all of which stand to gain advantages from AI technologies. Investigating the incorporation of important technologies, issues, opportunities, and Roadmap in this study will be a valuable resource for the community engaged in research on edge intelligence in electric vehicles
    corecore