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ABSTRACT An optimized design with real-time and multiple realistic constraints in complex engineering 

systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments, 

the approximation accuracy is directly affected by the parameters like node density and coverage. We propose 

a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear 

numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential 

evolution operator is used to circumvent group moves in small ranges and falling into the local optima and 

improves global searchability. The cross operator is employed to promote information interchange among 

individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary 

process's continuance and adding proactive and reactive features. The proposed algorithm's performance is 

verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE 

CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of fitness 

function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed 

algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high 

precision and faster convergence speed. The average location error is substantially reduced for the smart 

parking IoT application. 

INDEX TERMS Convergence, crossover operator, differential evolution operation, Internet of Things, optimization, particle 

swarm optimization, quantum computing. 

 

I. INTRODUCTION 

Optimization problem frequently occurs in real-time scenarios 

and one need to have efficient technique to attain the optimal 

solution with high convergence while dealing with a specific 

problem. The traditional gradient-based optimization method 

has limitations, and it fails to address complex optimization 

problems [1]. Metaheuristic algorithms are extensively 

utilized in solving the real life optimization problems. They 

are iterative and based on social behaviors or natural 

phenomena [2-3]. The fundamental idea behind natural 

evolutionary and swarm intelligence algorithms is to use 

mathematical models for simulating biological and physical 

structures in nature. The metaheuristic algorithms are 

comparatively efficient than the gradient based on the 

optimization [4 - 8]. The capability of parallel execution and 

disseminated features of swarm intelligence algorithms 

facilitates the probability of solving complex non-linear 

problems with innovative abilities such as flexibility, 

robustness, and searching capacity. However, the 

metaheuristic algorithm still needs to be upgraded because the 

convergence rate towards an optimum solution is 

comparatively slower. Hence, there is a need to alter and 

enhance exploration and exploitation abilities of the 

algorithms. [9 - 14]. Classical particle swarm optimization 

(PSO) [15], ant colony optimization (ACO) [16], grey wolf 

optimization (GWO) [17], Dragonfly Algorithm (DA) [18], 

Improved Whale Optimization (IWO) [19], Bat optimization 

algorithm (BOA) [20], Grass Hoffer Optimization Algorithm 
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(GHO) [21], An enhanced bacterial foraging optimization 

(EBFO) [22], Gray Wolf Optimization (GWO) hybridized 

with Grasshopper Optimization Algorithm (GOA) and 

developed GWO-GOA optimization algorithm [23], and 

others are the few examples of swarm intelligence algorithm. 

These algorithms determine the optimal solution with heuristic 

information and can be applied to dynamic, multiobjective, 

and NP-hard problems.  

With exponential growth in the deployment of the Internet 

of Things (IoT) and the advancements in supporting 

technologies such as cloud computing, mobile applications, 

and interfaces, swarm intelligence-based optimization exhibits 

considerable importance in dealing with the challenges faced 

for performance optimization by these networks. Generally, 

IoT deployment comprises large number of low cost and low 

power sensor nodes connected to the cloud servers and 

applications through the access points or gateways devices 

[24]. The important characteristics and requirements for IoT 

are traffic patterns and data rates, capacity and densification, 

coverage, energy efficient operations, localization, lower 

hardware complexity and cost effectiveness, and others. The 

IoT has a several applications such as smart cities, smart 

environment, utility metering, smart grid and energy, security 

and emergencies, retail, automotive and logistics, industrial 

automation and manufacturing, agriculture and farming, smart 

home/buildings, and real estate, health, life sciences, and 

wearables. Connectivity of a large number of devices in 

heterogeneous networks, energy consumption, node 

localization, routing of data packets, and security are the 

crucial challenges in IoT.  

The IoT systems are modelled as a set of simple devices, 

and swarm intelligence algorithms can be used to optimize the 

performance. A huge amount of data is collected from IoT 

nodes. The analysis of such data is performed using different 

mechanisms employing edge computing, fog computing, and 

cloud computing, where swarm intelligence can be applied as 

a multiobjective optimization problem. This approach greatly 

helps in improving the performance of the networks and 

reducing the complexity and cost.  A variety of algorithms 

based on swarm intelligence has been developed for wireless 

sensor network (WSN) routing protocols. A global positioning 

system (GPS) is commonly used for node localization 

problems. However, it is not economical and feasible due to 

high energy consumption. IoT node localization can be 

resolved as an error optimization problem using a swarm 

intelligence algorithm. Likewise, swarm-based optimization 

can be used in various ways to improve the performance of 

IoT networks. One of the such challenges is non-uniform 

deployment of IoT nodes due to mobility and because of 

application requirements. The mobile IoT nodes significantly 

improve data sensing capabilities with enhanced coverage and 

lower energy consumption. However, such scenarios and 

topologies pose the additional challenge of maintaining the 

node density and coverage to satisfy the application 

requirements. The node density and coverage directly affect 

the approximation accuracy. Many of the existing IoT node 

localization approaches are designed on a basic disk coverage 

model, which is unrealistic for implementing in actual 

application environments. In these approaches, spatial 

relationships of the supervised physical characteristics, sensor 

node association, and network fault tolerance are ignored, and 

hence it fails to attain the global optimization requirements. 

Furthermore, these approaches did not discuss and address the 

optimal solutions for node density and coverage in the IoT 

networks. To tackle the challenges of optimizing the node 

density and coverage, we propose a novel enhanced 

differential crossover quantum particle swarm optimization 

(EDCQPSO) algorithm. We have used hybrid optimization 

using quantum PSO, differential evolution operator, and 

crossover operator to have proactive and reactive operations.  

The developed algorithms have smaller fitness values and 

faster convergence, and it can be used for optimization in a 

wide variety of IoT applications. To demonstrate the usability 

of algorithm in IoT, we considered car parking IoT 

application. Our algorithm gives lower localization error and 

improved precision for the higher node densities as compare 

to the other existing algorithms. The paper's remaining 

structure is organized as: Section II presents the literature 

study about PSO enhancements. Section III describes a 

quantum particle swarm optimization (QPSO). Section IV 

presents the development of enhanced differential crossover 

quantum particle swarm optimization (EDCQPSO) algorithm. 

Section V discusses results and performance evaluation. 

Section VI presents the study on EDCQPSO for IoT 

application, and the paper is concluded in Section VII. 

 
II. RELATED WORK 

In the recent past, several swarm intelligence approaches, 

and modifications have been proposed. The relevant 

approaches to the research undertaken are discussed here. 

Tam et al. [25] proposed a hybrid approach using fuzzy 

clustering and PSO to reduce network interruption. This 

hybrid approach is executed repetitively until the construction 

of optimal sensor topology. Energy consumption is reduced by 

this method and improves connectivity from cluster head to 

base station and other nodes to cluster head. Optimized 

minimal spanning tree topology control using PSO is proposed 

in [26] to overcome low coverage drawbacks in traditional 

approaches. It converges to the condensed topology uniformly 

with lesser energy consumption. Swarm-based modified bat 

optimization algorithm [27] is utilized for calculating the 

precision of node localization problems. It improves 

localization and attains fast convergence. Discrete PSO and 

minimal spanning tree-based topology scheme with 

multiobjective constraints [28] consider the distance among 

the nodes, coverage of each edge, and their residual energies. 

Ghorpade et al.  [29] developed a binary grey wolf 

optimization topology control technique which works on 

active-inactive schedules of sensor nodes and presents a 

fitness function to minimize number of active nodes for 
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achieving extended lifetime. This algorithm achieves 

maximum coverage and connectivity. Ant colony 

optimization (ACO) is combined with local search for node 

deployment in WSN by considering cost reliability as a 

constraint [30]. Simulations results have proven that the 

proposed approach generates improved quality than the 

greedy algorithm. 

Although the PSO-based node localization approach [31] is 

computationally effective, there is not much improvement in 

the localization error. Bat algorithm-based localization [32] 

replicates bats' behavior using echolocation for the prey 

hunting during the darkness. In this approach, bat calculations 

are concurred along with a growing of chemotactic bacterial 

sponging control for improving the constraint accuracy in the 

lesser time. A multiobjective GWO technique for accurate 

localization of IoT nodes [33] is developed for achieving the 

higher efficiency with smaller number of the anchors. The 

objective functions have included the distance and topological 

constraints. Kumar et al. [34] have proposed a combined 

hybrid particle swarm optimization (HPSO) technique with 

the biogeography based optimization (BBO), which is also a 

two-step location estimation for minimizing location errors. 

RSSI is used as an input parameter, and the output weight is 

used for weighted centroid localization. These methods are 

inclined towards lower accuracy in case of unevenness 

between the identified nodes. A novel multiobjective 

optimization agent using particle swarm GWO and inverse 

fuzzy ranking is proposed in [35]. The developed enhanced 

PSGWO model is utilized for population and multi criteria 

based soft computing algorithms. This bio-inspired 

optimization technique is used to calculate low energy 

optimum path for IoT networks.   

An IoT-based range-based localization for smart city 

applications is proposed for accurate and low-cost localization 

[36]. The extreme learning machine (ELM), fuzzy system, and 

modified swarm intelligence is used to develop hybrid 

optimized fuzzy threshold ELM (HOFTELM) algorithm for 

the localization of elderly persons in smart cities. The 

algorithm outperforms existing techniques with average 

location error ratio (ALER) and computationally efficient. 

Although Van [37] has demonstrated that PSO is not an 

algorithm for global optimization; however, for the 

improvement in the performance of PSO, Sun et al.  [38] have 

proposed quantum PSO (QPSO) by combining quantum 

theory with PSO. QPSO algorithm guarantees the global 

optimal solution for the infinite number of search iterations. 

However, it is impractical since any algorithm permits only 

finite for the best solution in real-time applications. Moreover, 

QPSO falls into the local optima resulting the slower 

convergence. Various approaches have been proposed for the 

improvement in the convergence speed and global optima. 

Liang et al.  [39] has developed comprehensive learning 

quantum PSO using the learning approach. The information 

from other particles is utilized for updating particle velocity. 

This approach allows the swarm's diversity to be well-

maintained for discouraging convergence occurring at an early 

stage. Parallel diversity-controlled quantum particle swarm 

optimization (PDQPSO) [40] is proposed to enhance 

efficiency and get rid of early convergence. This approach 

aims to use the parallel technique to increase the population's 

diversity and reduce the algorithm run time. It achieves 

promising performance and reduced computational time for 

most of the test functions. LDS Coelho [41] incorporated a 

chaotic mutation operator with Quantum PSO. Simulations are 

carried out for solving optimization problems and it 

demonstrates improved performance. Shanshan Tu et al.  [42] 

proposed updating of crossover parameter to improve the 

quantum PSO performance and global search abilities. An 

approach proposed in [43] combines QPSO with Cauchy 

mutation operator (QPSO-CD) which adds extended 

capabilities for global hunt. 

Quantum based PSO with opposition based learning and 

generalized opposition based learning (CSQPSO) [44] 

improves the exploitation and also supports exploration. 

However, parallel improvement in global exploration ability 

and convergence speed is a challenging task. While avoiding 

local optima, the convergence speed of an algorithm may get 

reduced.  

Accordingly, the QPSO algorithm is requires precise design 

for the real-world optimization problem. For the swarm 

intelligence algorithms, balancing the global and local search 

capabilities is a crucial problem. In PSO, when we think of 

exploration, the fast convergence features lead to early 

convergence.  If the focus is on gain, then the single 

exploration approach of particle swarm has unsatisfactory 

convergence accuracy. For multiobjective PSO, the regular 

updates in global solutions also increase exploration and 

progress. 

For improving QPSO, sufficient data about each particle its 

own and optimal global position should be utilized by 

choosing an appropriate technique. Our research has 

incorporated a differential evolution into QPSO for improving 

the population diversity and avoid local optima. It uses 

competition and cooperation among individuals to solve 

optimization problems. Additionally, we have introduced a 

crossover operator with QPSO. The cross operations will 

promote the information interchange among individuals in a 

group, and those exceptional genes can be continued 

moderately, accompanying the continuance of the 

evolutionary process. The value of crossover probability plays 

a vital role in an algorithm's searchability and convergence 

speed. Ultimately groups can progress in the desired route. 

Enhanced differential crossover QPSO algorithm aims to 

improve control of exploring and exploiting hunts by 

considering adjacent relationships between the particles by a 

linear increase in the connectivity of the swarm's topology and 

carrying out regulating mechanisms. 
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III.  QUANTUM PARTICLE SWARM OPTIMIZATION 
Particle Swarm Optimization (PSO) [15], is based on the 

concept of swarm's social behavior that results in a group of 
nodes spread in a search space. It starts with initial 

population of swarm, called as nodes which explores the  

arbitrary position 𝑝𝑙𝑚 and velocity 𝑣𝑙𝑚 in m – dimensional 

hyperspace for node l. Every node is determined by using an 

objective function 𝑓(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚) where 𝑓: 𝑅𝑚 → 𝑅, 

represents the number of sensors. The PSO tries for wide 

coverage for a given connectivity value. Then, PSO guides 

each node for the position updates in the search space by 

considering the obtained global solution and best fitness 

values. The position update process is continued until the 
desirable globally best solution is attained or performed the 

given target of iterations.  

To determine the next position of a node in each iteration, 

velocity is updated by using (1), and position is updated by 

using (2) 

 

𝑉𝑙𝑚
𝑡+1 = 𝑉𝑙𝑚

𝑡 + 𝑎1𝑏1(𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑃𝑙𝑚

𝑡 )

+ 𝑎2𝑏2(𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑃𝑙𝑚

𝑡 )                      (1) 

𝑃𝑙𝑚
𝑡+1 = 𝑃𝑙𝑚

𝑡 + 𝑉𝑙𝑚
𝑡+1                                                                   (2) 

 

𝑙. 𝑚 = 1, 2, 3, … , 𝑀 + 𝑁. 𝑙. 𝑚 represents index of the sensor 

𝑃𝑙𝑚
𝑡 and 𝑉𝑙𝑚

𝑡  are the mth position component and velocity of 

lth sensor in tth iteration. 𝑏1 and 𝑏2 are the random numbers 

such that 0 ≤ 𝑏1, 𝑏2 ≤ 1. 𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡  and 𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚

𝑡  are the best 

and global best positions of lth sensor and the swarm. 𝑎1and 

𝑎2 are confidence nodes as in perception and community 

behavior. In the process of estimation, the sensor will take 
the weighted average position, which is determined using 

 

𝑊𝑙𝑚
𝑡 =

𝑎1(𝑏1)𝑙𝑚
𝑡 𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 + 𝑎2(𝑏2)𝑙𝑚
𝑡 𝑃𝑔𝑏𝑒𝑠𝑡𝑙𝑚

𝑡

𝑎1(𝑏1)𝑙𝑚
𝑡 + 𝑎2(𝑏2)𝑙𝑚

𝑡 , 

1 ≤ 𝑚 ≤ 𝑀               (3) 

PSO inclines to get stuck into local optima while tackling 

the composite problems. For improvement of PSO Sun et al.  

[38] have proposed quantum PSO (QPSO). The quantum 

particle swarm optimization algorithm assumes that the node 

swarm system satisfies quantum mechanics' elementary 

proposition. Node 𝑙 moves in the 𝛿 probable well centered at 

the point ‘W’ in mth dimension with basic quantum actions 

characteristic and its state can be described by  

 

𝜓(𝑃𝑙𝑚
𝑡+1) =

1

√𝐶𝑙𝑚
𝑡

∗ 𝑒𝑥𝑝 (
−|𝑃𝑙𝑚

𝑡+1 − 𝑊𝑙𝑚
𝑡 |

𝐶𝑙𝑚
𝑡 )                        (4) 

where C is the characteristic length of probable well 𝛿 and is 

associated with speed of the convergence and searchability. 

The probability density function of node l is as given in 

 

𝑄(𝑃𝑙𝑚
𝑡+1) =

1

√𝐶𝑙𝑚
𝑡

∗ 𝑒𝑥𝑝 (
−2|𝑃𝑙𝑚

𝑡+1 − 𝑊𝑙𝑚
𝑡 |

𝐶𝑙𝑚
𝑡 )                      (5) 

To obtain the node's position, it is collapsed into a classical 

state from the quantum state. The position of the node is 

determined by using 

 

𝑃𝑙𝑚
𝑡+1 = 𝑊𝑙𝑚

𝑡 ±
𝐶𝑙𝑚

𝑡

2
𝑙𝑛

1

𝑟𝑙𝑚
𝑡                                                         (6) 

 

where W is the node motion center and is called the attractor 

of the node. r is lies between 0 to 1 with a uniform 

distribution function. Parameter C is determined by using  

 

𝐶𝑙𝑚
𝑡 = 2𝛾‖𝐿𝑚

𝑡 − 𝑃𝑙𝑚
𝑡 ‖                                                              (7) 

 

𝐿𝑚
𝑡 =

∑ 𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡𝑁

𝑙=1

𝑁
                                                                 (8) 

 

𝛾 is the contraction and expansion factor, which has to be 

decreased while running the algorithm. 𝐿𝑡 =
{𝐿1

𝑡 , 𝐿2
𝑡 , … . . , 𝐿𝑚

𝑡 } is mean optimal position, representing 

mean optimal position of all nodes.  

IV. ENHANCED DIFFERENTIAL CROSSOVER QUANTUM 
PARTICLE SWARM OPTIMIZATION 

In QPSO, every node holds the weighted mean position 

obtained by considering earlier individual and group optimal 

positions as a desirability point. Such a method has the 

advantage of simple calculations, but this holding weighted 

mean position has two drawbacks; in addition to own 

learning experience, the position of every node is subject to 

the group's historical optimal position. In addition to this, the 

possible dispersal space of each node's attraction point 
progressively declines during an algorithm's development 

process. It leads to a swift decay of diversity reducing 

capability while handling the multiobjective and composite 

optimization problems. It ultimately reduces ability to jump 

out of local optimization in the later stage. 

Since the algorithm gets in to local optima in finishing 

stage, indicating that individual and global positions of the 

particles are almost adjacent to each other or maybe 

coincident. Hence, for improving the QPSO algorithm's 

performance, adequate information about the nodes' 

individual and global optimal positions can be used by 

choosing a suitable technique. To overcome this drawback, a 

differential evolution operator can be incorporated into QPSO. 

A differential evolutionary algorithm [45] is proposed on the 

population differences. It is based on the use of competition 

and cooperation among individuals for solving optimization 

problems. The differential evolution operator improves the 

population diversity as well as jumping out of local optima. 

Position update in QPSO is performed by using  

 

𝑈𝑙𝑚
𝑡 = 𝜒𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚
𝑡                                      (9) 

𝐴𝑉𝑏𝑒𝑠𝑡𝑚 =
1

𝑁
∑ 𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡                                                   (10)

𝑁

𝑙=1
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𝑃𝑙𝑚
𝑡+1 = 𝑊𝑙𝑚

𝑡 ± 𝛾|𝐴𝑣𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | 𝑙𝑛 (

1

𝑟𝑙𝑚
𝑡 )                    (11) 

𝜒 is lies in between 0 and 1.  𝑊𝑙𝑚
𝑡  is arbitrary position amid 

𝑃𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. By combining (3) and (5), the position 

evolution equation changes to (12) as given below, 

 

   𝑃𝑙𝑚
𝑡+1 = 𝜒(𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚
𝑡 ) + 𝑔𝑏𝑒𝑠𝑡𝑚

𝑡

± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | 𝑙𝑛 (

1

𝑟𝑙𝑚
𝑡 )           (12) 

Let 𝑎 and 𝑏 be the nodes in the existing swarm distinct from 

𝑙 then the position difference between them is, 

 

∅ = 𝑃𝑏 − 𝑃𝑎                                                                              (13) 

 

Substitute ∅ to replace the difference 𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚

𝑡  

of (12) and randomness can be increased by adding a random 

number (1 − 𝜒) to the second term  𝑔𝑏𝑒𝑠𝑡𝑚
𝑡  of (12). The new 

evolution equation is 

 

𝑃𝑙𝑚
𝑡+1 = 𝜒𝜙𝑚 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚

𝑡

± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | 𝑙𝑛 (

1

𝑟𝑙𝑚
𝑡 )           (14) 

Differential evolution operator introduced in (14) helps 

avoid group moves in small range, hence falls in to the local 

optima, as favorable for enhancing the global searchability.  

In the next phase, we have introduced a crossover operator 

with QPSO. These cross operations will promote the 

information interchange among individuals in a group, and 

those exceptional genes can be continued moderately, 

accompanying the continuance of the evolutionary process. 

Ultimately groups can progress in the desired route. The 

position estimate 𝑃𝑙
𝑡+1 of node 𝑙 is generated by using (3), (7), 

(8), and (14). Later, the estimated position 𝑃𝑙
𝑡+1 and individual 

optimal position 𝑃𝑏𝑒𝑠𝑡𝑙
𝑡 are separated for the generation of the 

test position 𝑌𝑙
𝑚 = {𝑦𝑙1

𝑡 , 𝑦𝑙2
𝑡 , … , 𝑦𝑙𝑚

𝑡 } the cross equation is, 
 

𝑌𝑙𝑚
𝑡+1 = {

𝑃𝑙𝑚
𝑡+1,     (𝑟𝑎𝑛𝑑)𝑚 < 𝑐, 𝑚 = 𝑚𝑟𝑎𝑛𝑑  

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 ,                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

                  (15) 

where (𝑟𝑎𝑛𝑑)𝑚 is random number with uniform distribution 

such that (𝑟𝑎𝑛𝑑)𝑚 ∈ [0,1] and 𝑐 is the crossover probability. 

Whereas 𝑚𝑟𝑎𝑛𝑑  is randomly and uniformly generated integer 

on [1, 𝑀]. 
Lastly, updated optimal position is given by  

 

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡+1 = {

𝑌𝑙𝑚
𝑡+1, 𝑓(𝑌𝑙𝑚

𝑡+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 )

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 ,      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

          (16)  

𝑓(∗) is a compatible cost function. The value of the 

crossover probability plays a vital role in an algorithm's 

searchability and convergence speed. Smaller values of 

probability enable individuals to hold further information 

and preserve higher diversity of the group, helps during the 

global exploration. On the contrary, the larger value of the 

probability impulses individuals to acquire additional 

experimental information in the group, consequently 
accelerating an algorithm's convergence speed. 

By considering the crucial role of crossover probability 𝑐, it 

is directly encoded into each node for achieving adaptive 

control.  Node 𝑙 in given population is defined in 

 

𝑃𝑙
𝑡 = {𝑝𝑙1

𝑡 , 𝑝𝑙2
𝑡 , … , 𝑝𝑙𝑚

𝑡 , 𝑐𝑙
𝑡  }                                                    (17) 

 

Crossover probability for every node in the population is 

updated by using 

 

𝑐𝑙
𝑡+1 = {

𝑟𝑎𝑛𝑑𝑚(0, 1),         𝑟𝑎𝑛𝑑𝑚(0, 1) < ∝  

𝑐𝑙
𝑡 ,                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

               (18) 

 

𝛼 is the updated probability of parameter 𝑐. For ease of 

operations, we have introduced an additional binary vector 

𝐵𝑙
𝑡+1for every node 𝑙.  

 

    𝐵𝑙
𝑡+1 = {𝑏𝑙1

𝑡+1, 𝑏𝑙2
𝑡+1, … , 𝑏𝑙𝑚

𝑡+1}                                           (19) 

    𝑏𝑙𝑚
𝑡+1 = {

1, 𝑟𝑎𝑛𝑑𝑚(0, 1) < 𝑐𝑙
𝑡+1, 𝑚 = 𝑚𝑟𝑎𝑛𝑑

0,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    
             (20) 

𝑍𝑙
𝑡+1 =

1

𝑀
∑ 𝑏𝑙𝑚

𝑡+1                                                                  (21)

𝑀

𝑙=1

 

By ignoring the influence of 𝑚𝑟𝑎𝑛𝑑 , 𝑍𝑙
𝑡+1 follows binomial 

distribution with 𝑀 parameters and probability 𝑐𝑙
𝑡+1. The 

probability 𝑐𝑙
𝑡+1 is calculated by using 

 

𝑐𝑙
𝑡+1 = {

𝐵𝑙
𝑡𝑍𝑙

𝑡+1 + (1 − 𝐵𝑙
𝑡)𝑐𝑙

𝑡 ,   𝑓(𝑍𝑙
𝑡+1) < 𝑓(𝑐𝑙

𝑡)

𝑐𝑙
𝑡                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

        (22) 

 

Random number  𝐵𝑙
𝑡 lies between 0.9 ≤ 𝐵𝑙

𝑡 ≤ 1. 

Additionally, extension coefficient 𝜆 is designed so that with 

the increase in the number of iterations, it decreases linearly. 

𝜆 = 𝜆𝑚𝑎𝑥 −
𝑡

𝑇
∗ (𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)                                           (23) 

where 𝑇 represents the maximum iterations to be attained. 

Enhanced DCQPSO algorithms process flow is shown in the 

Fig. 1 
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FIGURE 1. Process flow of EDCQPSO algorithm 

 

The steps of the algorithm are as given below: 

1. Set 𝑡 =  0, initialize current position 𝑃𝑙
0 of every node 

in the swarm, and assemble 𝑐𝑙
0 = 𝑃𝑙

0. Also, set other 
relevant parameters. 

2. Determine the mean optimal position of the node swarm 

by using (10). 

3. For every node 𝑙, (1 ≤ 𝑙 ≤ 𝑁) in the group, perform 

Step 4 to Step 7. 

4. Use (4) to introduce differential evolution operator for 

updating node position. 

5. Establish the crossover operator and estimate the 

position by considering an updated position in the 

previous step and initiate the test position by using (15). 

6. At the test position, determine the adaptive value of 
every node's dimension and use (22) to update the 

crossover probability. 

7. Update the individual optimal position of the nodes by 

using (16)  

 

V. EXPERIMENTAL SETUP AND PERFORMANCE 
ANALYSIS 
 

We initially present the comparison of proposed algorithm, 

EDCQPSO, with others through 30 classic benchmark 

functions in IEEE CEC2017 [46], as shown in Table 1. The 

performance of our algorithm on benchmark functions was 

verified. EDCQPSO is also compared with different PSO 

versions using ten benchmark functions in IEEE CEC2019, 

as shown in Table 2. We used the Friedman test [47] and 

Wilcoxon symbolic rank test [48] for optimal results on the 

benchmarks and statistical analysis. To analyze the proposed 
algorithm's performance, we have used classic benchmark 

functions from IEEE CEC2017 [49] and IEEE CEC2019 

[50]. IEEE CEC2017 is composed of three unimodal (C01-

C03), seven multimodal (C04-C10), ten hybrid (C11-C20), 

and ten composite (C21-C30) functions. IEEE CEC2019 is 

composed of 10 functions (C31-C40). The benchmark 

functions of IEEE CEC2017 is as given in Table 1 and used 

for comparing our algorithm with other swarm intelligence 

algorithms.  

Simulations are carried out in MATLAB with identical 

parameter settings for comparison of the results. For 

performance analysis, the Friedman test [47] is used to 

thoroughly evaluate all algorithms' optimal results on the 

benchmark functions. To classify the chosen algorithms' mean 

performance, the average sort value (ASV) is attained through 

statistical comparisons.  

Additionally, we have implemented the paired Wilcoxon 

symbolic rank test [48] for statistical assessment to identify 

variance among two samples with 5% level of significance. 

The statistical results are shown in Table 5 and Table 8. In 

these tables, symbol ‘+’ specifies that with 95% inevitability 

the null hypothesis is rejected (Avg. value < 0.05), the symbol 

‘-’ indicates that the null hypothesis is rejected (Avg. value <
 0.05) and symbol ‘=’ represents that there is no statistical 

variance among the pairwise algorithms (Avg. value ≥ 0.05). 

 

A. Comparisons of the EDCQPSO with Other Swarm 
Algorithms 

 

We have compared the performance of EDCQPSO with six 

recently developed swarm intelligence algorithms. These 

algorithms are; GWO [17], DA [18], IWO [19], GHO [21], 

EBFO [22], and GWO-GOA [23]. All the algorithms are 

simulated in the same environment on the benchmark 

functions of CEC2017 by setting parameters required 

parameters for each algorithm. Details of parameters chosen  

for every algorithm are presented in Table 3. Max. number of 

iterations to be attained are 2000 with population's size of 40 

for each algorithm.  
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TABLE 1: CEC2017 TEST FUNCTIONS [46 ] 

Function Function name Optimum 

CEC2017 unimodal functions (UF) 

CE01 
Shifted and rotated bent cigar 

function 
100 

CEE02 
Shifted and rotated sum of 

different power function 
200 

C03 
Shifted and rotated Zakharov 

function 
300 

CEC2017 multimodal functions (MF) 

CE04 
Shifted and rotated Rosenbrock’s 

function 
400 

CE05 
Shifted and rotated Rastrigin’s 

function 
500 

CE06 
Shifted and rotated expanded 

Scaffer’s F6 function 
600 

CE07 
Shifted and rotated Lunacek bi-

Rastrigin function 
700 

CE08 
Shifted and rotated noncontinuous 

Rastrigin’s function 
800 

CE09 Shifted and rotated Levy function 900 

CE10 
Shifted and rotated Schwefel’s 

function 
1000 

CEC2017 hybrid functions (HF) 

CE11 Hybrid Function1 (N = 3) 1100 

CE12 Hybrid Function2 (N = 3) 1200 

CE13 Hybrid Function3 (N = 3) 1300 

CE14 Hybrid Function4 (N = 4) 1400 

CE15 Hybrid Function5 (N =4) 1500 

CE16 Hybrid Function6 (N = 4) 1600 

CE17 Hybrid Function6 (N = 5) 1700 

CE18 Hybrid Function6 (N = 5) 1800 

CE19 Hybrid Function6 (N = 5) 1900 

CE20 Hybrid Function16 (N = 6) 2000 

CEC2017 composition functions (COMPOSITE FUNCTION) 

CE21 Composite Function 1 (N = 3) 2100 

CE22 Composite Function 2 (N = 3) 2200 

CE23 Composite Function 3 (N = 4) 2300 

CE24 Composite Function 4 (N = 4) 2400 

CE25 Composite Function 5 (N = 5) 2500 

CE26 Composite Function 6 (N = 5) 2600 

CE27 Composite Function 7 (N = 6) 2700 

CE28 Composite Function 8 (N = 6) 2800 

CE29 Composite Function 9 (N = 3) 2900 

CE30 Composite Function 10 (N = 3) 3000 

 

 

 

 
TABLE 3: SIMULATION PARAMETERS (1) 

Algorithm Other Parameters 

EDCQPSO 𝐵𝑙
𝑡 ∈ [0, 1].  𝜒 ∈ (0, 1),  

DA [18] 
w ∈ [0.9 0.2], s =  0.1, a =  0.1,  
c = 0.7, f =  1, e =  1 

GWO [17] 𝑎 ∈ [2,0] 

IWO [19] 𝑎1 ∈ [2, 0], 𝑎2 ∈ [−2, −1], 𝑏 = 1 

GHO [21] 𝑙 = 1.5, 𝑓 = 0.5, 𝑐𝑚𝑎𝑥  =  1;  𝑐𝑚𝑖𝑛  =  0.00004   

EBFO [22] ∆∈ [−1, 1] 

GWO-GOA [23] N = 30, 𝐶𝑓= 2500, 𝐿𝑓= 0.94 

 

 The comparison of mean values and standard deviation 

after thirty iterations on thirty benchmark functions are listed. 

Table 4 shows that EDCQPSO ranks first, followed 

sequentially by GWO-GOA, GHO, GWO, IWO, EBFO, and 

DA, based on overall rank for CE01-CE30 functions of 

CEC2017 [46]. On three unimodal test functions (CE01-

CE03), EDCQPSO performs better than other algorithms. The 

multimodal test functions (CE04–CE10) EDCQPSO are 

highly comparable for CE04, CE06, and CE09. However, 

GWO-GOA outperforms all the other algorithms on CE10.  

It can also be observed that results obtained by GWO-GOA 

are competing closely to multimodal EDCQPSO, but the trend 

changes for hybrid and composite functions. On the ten hybrid 

test functions (CE11–CE20), excluding CE14, EDCQPSO 

attains the optimal results. For the hybrid functions CE11, 

CE12, CE13, CE15, CE17, and CE19, EDCQPSO performs 

outstandingly compared to other algorithms. Lastly, for the ten 

composition functions (CE21–CE30), EDCQPSO 

outperforms the remaining algorithms. except for CE24. It 

gives the best optimal value for CE30. The performance 

improvement is due to the proposed differential evolution 

operator which escapes group changes in smaller range and 

falling in to local optima, promoting global searchability. 

Proposed algorithm shows an average improvement of 

87.65%, 81.29%, 76.98%, 70.79%, 69.68% and 66.38% in 

comparison with DA, EBFO, IWO, GWO, GHO and GWO-

GOA respectively. The convergence progression of all the 

above comparative algorithms for sample functions from 

CEC2017 is shown in Fig.2. The logarithmic scale of optimal 

objective function value on standard test functions is evaluated 

by considering a population size of 40 with 2000 iterations. 

The proposed algorithm shows appropriate behavior until 

maximum iterations on most tested functions throughout the 

evolution process, whereas others methods get stuck into local 

minima. 

 

 

 

 

 

 

TABLE 2: CEC2019 TEST FUNCTIONS [46] 

Function Function name 
𝐹𝑖

∗

= 𝐹𝑖 (𝑦∗) 
D Search Range 

CE31 
Storns Chebyshev polynomial 

fitting problem 
1 9 [−8192, 8192] 

CE32 
Inverse Hilbert matrix 

problem 
1 16 

[−16834, 

16834] 

CE33 
Lennard-Jones minimum 

energy cluster 
1 18 [−4, 4] 

CE34 Rastrigin’s function 1 10 [−100, 100] 

CE35 Griewank’s function 1 10 [−100, 100] 

CE36 Weierstrass function 1 10 [−100, 100] 

CE37 Modified Schwefel’s function 1 10 [−100, 100] 

CE38 
Expanded Schaffer’s F6 

function 
1 10 [−100, 100] 

CE39 Happy Cat function 1 10 [−100, 100] 

CE40 Ackley function 1 10 [−100, 100] 
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 TABLE 4: MEAN AND STANDARD DEVIATION OF DIFFERENT ALGORITHMS FOR IEEE CEC2017 

  EDCQPSO      DA      GWO      IWO GWO-GOA      GHO     EBFO 

CE01 
Average 4.97  E03  2.52  E09  2.63  E09  1.18  E06  1.69  E05  1.25  E06  9.34  E09  

Std.Dev. 4.01  E03  2.06  E09  2.02  E09  3.26  E05  5.63  E05  1.61  E06  7.94  E09  

CE02 
Average 2.98  E17  5.96  E37  1.26  E31  4.63  E18  6.41  E25  1.22  E27  1.84  E43  

Std.Dev. 1.01  E18  1.97  E38  3.23  E31  1.45  E18  1.81  E26  6.70  E27  1.01  E44  

CE03 
Average 5.71  E03  1.04  E05  4.46  E04  1.87  E04  6.83  E03  6.88  E03  1.25  E05  

Std.Dev. 2.97  E03 2.52  E04 9.63  E03 1.38  E04 1.66  E03 3.38  E03 5.44  E04 

CE04 
Average 1.21  E02  1.22  E03  6.15  E02  5.07  E02  3.76  E02  5.13  E02  1.20  E03  

Std.Dev. 0.97  E01  6.47  E02  9.11  E01  2.54  E01  2.13  E01  2.36  E01  8.37  E02  

CE05 
Average 6.07  E02  8.74  E02  6.09  E02  7.72  E02  6.34  E02  6.45  E02  7.04  E02  

Std.Dev. 2.36  E01  8.02  E01  2.42  E01  6.30  E01  2.85  E01  3.27  E01  4.60  E01  

CE06 
Average 5.92  E02  6.76  E02  6.10  E02  6.63  E02  6.04  E02  6.46  E02  6.40  E02  

Std.Dev. 1.01  E00 1.24  E01 4.94  E00 1.25  E01 1.76  E01 1.89  E01 1.05  E01 

CE07 
Average 7.61  E02  1.07  E03  8.75  E02  1.12  E03  8.14  E02  8.83  E02  1.14  E03  

Std.Dev. 3.31  E01  7.23  E01  3.69  E01  7.80  E01  3.60  E01  5.38  E01  2.33  E02  

CE08 
Average 7.98  E02  1.10  E03  8.92  E02  9.93  E02  8.69  E02  9.38  E02  1.01  E03  

Std.Dev. 2.07  E01  5.14  E01  2.28  E01  3.54  E01  2.64  E01  3.76  E01  3.90  E01  

CE09 
Average 1.41  E03  1.32  E04  2.00  E03  7.95  E03  2.90  E03  5.53  E03  7.53  E03  

Std.Dev. 5.16  E02 4.72  E03 6.29  E02 3.01  E03 8.88  E02 4.24  E03 2.63  E03 

CE10 
Average 5.04  E03  7.09  E03  4.19  E03  5.70  E03  4.45  E03  5.26  E03  5.54  E03  

Std.Dev. 3.97  E02  7.87  E02  6.35  E02  7.76  E02  2.78  E02  8.68  E02  6.87  E02  

CE11 
Average 1.02  E03  2.73  E03  2.25  E03  1.28  E03  1.46  E03  1.39  E03  5.06  E03  

Std.Dev. 4.31  E01  9.50  E02  1.09  E03  6.76  E01  8.52  E01  9.03  E01  4.25  E03  

CE12 
Average 5.71  E05  5.70  E08  6.01  E07  6.08  E06  1.94  E06  1.99  E07  5.43  E08  

Std.Dev. 2.14  E05 5.21  E08 7.49  E07 3.76  E06 5.10  E06 2.25  E07 9.58  E08 

CE13 
Average 2.18  E04  7.80  E07  2.20  E07  1.88  E05  4.45  E04  1.65  E05  1.29  E07  

Std.Dev. 1.32  E04  1.97  E08  8.58  E07  1.12  E05  4.30  E04  1.35  E05  2.68  E07  

CE14 
Average 6.93  E03  1.15  E06  4.15  E05  3.83  E04  3.59  E03  3.31  E03  4.87  E05  

Std.Dev. 2.79  E03  2.03  E06  4.51  E05  3.15  E04  3.47  E03 3.19  E03 1.34  E06  

CE15 
Average 5.94  E03  2.27  E05  2.07  E06  7.44  E04  1.31  E04  7.36  E04  6.07  E04  

Std.Dev. 5.19  E03 3.24  E05 7.77  E06 3.98  E04 1.81  E04 4.72  E04 4.87  E04 

CE16 
Average 2.11  E03  4.00  E03  2.56  E03  3.13  E03  2.65  E03  2.88  E03  3.05  E03  

Std.Dev. 2.01  E02  6.16  E02  2.95  E02  3.45  E02  2.05  E02  3.64  E02  4.39  E02  

CE17 
Average 1.71  E03  2.89  E03  1.99  E03  2.45  E03  2.11  E03  2.25  E03  2.50  E03  

Std.Dev. 7.51  E01  3.52  E02  1.44  E02  2.86  E02  8.43  E01  2.01  E02  2.56  E02  

CE18 
Average 1.85  E05  6.98  E06  1.10  E06  7.07  E05  6.26  E05  7.01  E05  2.11  E06  

Std.Dev. 1.37  E05 8.23  E06 1.25  E06 5.97  E05 1.27  E05 1.05  E06 3.06  E06 

CE19 
Average 4.17  E03  4.87  E07  9.45  E05  4.31  E05  7.96  E04  3.65  E06  1.59  E07  

Std.Dev. 2.24  E03  6.38  E07  1.26  E06  2.90  E05  7.00  E04  3.12  E06  3.80  E07  

CE20 
Average 2.16  E03  2.83  E03  2.43  E03  2.78  E03  2.37  E03  2.60  E03  2.72  E03  

Std.Dev. 1.01  E02  1.90  E02  1.37  E02  2.29  E02  1.54  E02  1.77  E02  2.24  E02  

CE21 
Average 2.34  E03  2.66  E03  2.39  E03  2.56  E03  2.45  E03  2.43  E03  2.50  E03  

Std.Dev. 4.14  E01 7.42  E01 2.34  E01 7.41  E01 3.17  E01 3.20  E01 5.32  E01 

CE22 
Average 2.21  E03  7.65  E03  4.94  E03  6.16  E03  3.84  E03  5.75  E03  6.86  E03  

Std.Dev. 1.11  E00  2.10  E03  1.80  E03  1.64  E03  1.88  E02  1.86  E03  8.83  E02  

CE23 
Average 2.41  E03  3.28  E03  2.76  E03  3.00  E03  2.65  E03  2.80  E03  2.84  E03  

Std.Dev. 3.11  E01  1.75  E02  3.61  E01  7.99  E01  3.53  E01  3.99  E01  4.03  E01  

CE24 
Average 2.41  E03  3.45  E03  2.94  E03  3.20  E03  2.92  E03  2.16  E03  2.99  E03  

Std.Dev. 3.01  E01 1.62  E02 5.35  E01 1.17  E02 3.19  E01 2.98  E01 3.20  E01 

CE25 
Average 2.62  E03  3.17  E03  2.98  E03  2.91  E03  2.82  E03  2.93  E03  3.31  E03  

Std.Dev. 7.68  E00  1.82  E02  3.83  E01  2.02  E01  1.08  E01  2.87  E01  5.67  E02  

CE26 
Average 3.97  E03  8.66  E03  4.84  E03  6.62  E03  4.71  E03  5.29  E03  5.81  E03  

Std.Dev. 3.19  E02  1.60  E03  3.82  E02  1.41  E03  6.61  E02  9.69  E02  4.31  E02  

CE27 
Average 3.11  E03  3.56  E03  3.26  E03  3.28  E03  3.14  E03  3.24  E03  3.26  E03  

Std.Dev. 1.94  E-04 1.72  E02 2.09  E01 4.33  E01 9.38  E00 1.99  E01 3.22  E01 

CE28 
Average 3.13  E03  3.80  E03  3.42  E03  3.23  E03  3.26  E03  3.27  E03  4.20  E03  

Std.Dev. 4.97  E01  2.01  E02  7.98  E01  2.62  E01  2.68  E01  2.84  E01  9.42  E02  

CE29 
Average 3.51  E03  5.45  E03  3.75  E03  4.33  E03  3.88  E03  4.14  E03  4.19  E03  

Std.Dev. 1.08  E02  6.82  E02  1.49  E02  3.27  E02  1.31  E02  1.90  E02  3.11  E02  

CE30 
Average 1.14  E04  3.89  E07  7.73  E06  1.46  E06  8.61  E05  7.67  E06  1.17  E06  

Std.Dev. 2.99  E03 2.96  E07 7.45  E06 8.15  E05 5.60  E05 5.76  E06 2.04  E06 
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information interchange among individuals in a group. Those 

exceptional genes get continued moderately, accompanying 

the continuance of the evolutionary process. The convergence 

rate of GWO-GOA for unimodal is also comparable. 

However, in the case of hybrid and composite function, it 

converges fast for initial iterations, and for higher iterations, it 

moves around local optima.

On an average for unimodal, multimodal, hybrid and 

composite function EDCQPSO performs 34.94%, 34.39%, 

31.01%, 23.18%, 19.37% and 16.27% faster than DA, EBFO, 

IWO, GWO, GHO and GWO-GOA respectively. 

Approximately after 600 iterations, EDCQPSO converges 

rapidly towards the global optimum because the cross 

operations used in the proposed algorithm encourage 

The results shows that EDCQPSO performs better as 

compared to other five algorithms for most CEC2017 test 

functions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE01 

FIGURE 2 (a). Convergence Progression for unimodal, multimodal, hybrid, and composite function for CEC2017 

 

 

 

 

 

 

 

TABLE 5: STATISTICAL ANALYSIS OF DIFFERENT ALGORITHMS 

FOR IEEE CEC2017 

Algorithm 
Rank of 

Algorithm 
ASV + : = : - 

EDCQPSO 1 1.375556 26: 4: 0 

DA 7 11.14333 27: 0: 3 

GWO 4 4.71 28: 1: 1 

IWO 5 5.976667 30: 0: 0 

GWO-GOA 2 4.092317 29: 1: 0 

GHO 3 4.537778 24: 3: 3 

EBFO 6 7.354444 30: 0: 0 
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3093113, IEEE Access

 

VOLUME XX, 2017 9 

B. COMPARISONS OF THE EDCQPSO WITH OTHER 
VERSIONS OF PSO 

We have also compared performance of EDCQPSO with PSO 

and its versions. These algorithms are; PSO [15], PDQPSO 

[40], QPSO – CD [42], CLQPSO [43], and CSQPSO [44]. All 

these algorithms are simulated in the same environment on the 

IEEE CEC2019 benchmark functions by setting parameters 

the same as that of the original paper. Details of parameters 
chosen for every algorithm are presented in Table 6.  
 

TABLE 6: SIMULATION PARAMETERS (2) 

Algorithm Other Parameters 

PSO [15] w = 1, 𝑐1  =  2, 𝑐2  =  2. 

CLQPSO [42] 𝑤 ∈ [0.9, 0.2], 𝑚 = 5, 𝑐 = 1.496 

PDQPSO [40] 𝑤 ∈ [0.9, 0.4], 𝑐1 ∈ [2.5, 0.5], 𝑐1 ∈ [0.5, 2.5] 

QPSO-CD [43] α ∈ [1.0, 0.5], 𝑆 = 2, 𝑐1  =   𝑐2  =  2. 

CSQPSO [44] ∆∈ [−1, 1], 𝑐1  =  1.2, 𝑐2  =  0.5. 

EDCQPSO 𝐵𝑙
𝑡 ∈ [0, 1].  𝜒 ∈ (0, 1) 

 

 

The maximum number of iterations to be attained are 2000 

for population size of 40 for each algorithm.  For all the PSO 

algorithm variants, convergence rate, as shown in Fig. 3, is 

analyzed in a logarithmic scale of best objective function value 

on test functions. EDCQPSO reaches the optimal solution 

with high precision and faster convergence speed. 

All the results and statistical analysis shows that the 

proposed algorithm improves the solution quality and 

convergence behaviour. On an average for the test functions 

in IEEE CEC 2019 EDCQPSO performs 65.05%, 53.77%, 

53.72%, 48.19%, and 26.58% faster than PSO, PDQPSO, 

CLQPSO, QPSO-CD and CSQPSO, respectively. The mean, 

standard deviation, and rank of the algorithm after ten 

iterations on ten benchmark functions of IEEE CEC2019 are 

compared and are shown in Table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CE31 

FIGURE. 3(a). Convergence Progression for unimodal, multimodal, hybrid, and composite function for CEC2019 

 

 

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3093113, IEEE Access

 

VOLUME XX, 2017 9 

 

 

 

 

 

 

33 
                                                                                                                                   FFIGURE 3(b). CE33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                    IFIGURE 3(c). CE35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                    FFIGURE 3(d). CE38                                                                                       
 

 

 

                                                         

 

 

 

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3093113, IEEE Access

 

VOLUME XX, 2017 9 

 
 

TABLE 7: MEAN AND STANDARD DEVIATION AND RANK OF DIFFERENT ALGORITHMS FOR IEEE CEC2019 

  PSO QPSO-CD CLQPSO PDQPSO CSQPSO EDCQPSO 

CE31 
Average 8896219 

 

 

3.61E + 07 

 

2.52E + 08 

 
1.49E + 08 459.1043 342.0721 

Std.Dev. 9085310 

 
1.41E + 07 1.38E + 08 1.09E + 08 1037.417 9719.327 

CE32 
Average 3418.755 

 
21312.991 25725.15 9846.839 359.3299 321.2178 

Std.Dev. 1247.997 

 
5618.317 6418.767 3100.053 482.5013 459.5207 

CE33 
Average 9.810943 5.181039 6.687039 8.342442 3.694955 2.814955 

Std.Dev. 1.817491 1.571842 1.664284 1.53575 2.341597 1.982033 

CE34 
Average 57.29179 

 
39.39786 46.66576 25.81332 14.61567 10.11620 

Std.Dev. 22.17147 

 
8.832141 9.121141 8.125042 7.36528 4.360001 

CE35 
Average 9.03234 

 
1.410394 1.570454 1.661167 1.806667 1.200007 

Std.Dev. 8.57788 

 
0.196681 0.213347 0.116622 0.069533 0.039211 

CE36 
Average 9.817933 

 
6.231456 8.175133 3.799174 3.533781 2.421985 

Std.Dev. 1.126773 1.253678 1.284578 1.236747 1.823304 1.910023 

CE37 
Average 1396.01 

 
10969.84 11159.353 681.257 680.2251 667.2373 

Std.Dev. 235.5401 

 
327.8141 387.7451 243.6093 261.1453 252.1712 

CE38 
Average 4.967392 

 
4.31508 4.512828 4.107098 3.926769 3.124242 

Std.Dev. 0.395858 

 

 

0.243752 0.282175 0.436445 0.499053 0.421053 

CE39 
Average 1.621969 

 
1.314002 1.528999 1.264191 1.184663 1.114663 

Std.Dev. 0.401281 0.232501 0.240001 0.102787 0.103211 0.086121 

CE40 
Average 21.92294 

 
21.41423 21.47964 21.14255 23.34871 20.30004 

Std.Dev. 0.097032 0.086102 0.087129 0.084619 0.092195 0.078175 

 

TABLE 8: STATISTICAL ANALYSIS OF DIFFERENT 

ALGORITHMS FOR IEEE CEC2019 

Algorithm 
Rank of 

Algorithm 
ASV + : = : - 

EDCQPSO 1 1.5 6: 4: 0 

PSO 6 6.3887 4: 0: 6 

QPSO - CD 3 2.8791 8: 1: 1 

CLQPSO 4 3.3125 9: 0: 1 

PDQPSO 5 4.3333 10: 0: 0 

CSQPSO 2 2.6667 9: 1: 0 

 

The outcomes of Table 8 prove that based on overall rank on 

the CE31-CE40 functions of CEC2019, EDCQPSO ranks first 

and then followed sequentially by CSQPSO, QPSO-CD, 

CLQPSO, PDQPSO, and PSO. Proposed algorithm shows an 

average improvement of 76.52%, 65.38%, 54.72%, 47.90%, 

and 43.75% in comparison with PSO, PDQPSO, CLQPSO, 

QPSO-CD and CSQPSO respectively. 

The proposed approach has enhanced its global searching 

capability compared to the other optimal methods on all the 

test functions.  

 

 

 

 

 

VI. EDCQPSO FOR IOT APPLICATIONS 

 

IoT has large number of applications in different areas such as 

localization, target tracking, automation, environmental 

monitoring, utility meters, agriculture, health and many more. 

These applications in wide area are feasible because of large 

numbers of sensor nodes are deployed and periodically 
sensing of given parameters. Accurate localization of sensor 

nodes is one of the most crucial requirements for many 

applications. Localization is the process of estimating current 

locations of sensor nodes without the knowledge of their initial 

locations. Localization algorithm should have a capability to 

accurately locate the sensor node quickly with minimal energy 

consumption. To achieve the performance improvement, 

recently, swarm intelligence based algorithms are being 

developed for localizing the sensor nodes. Such challenge can 

be treated as optimization problem in a multi-dimensional 

space.  

Here, using the EDCQPSO algorithm, we aim to localize 
the deployed IoT nodes and reduce the computational 

complexity, enhancing these resource-constrained node’s 

lifetimes. To demonstrate localization, we consider IoT based 

smart car/vehicle parking application. We consider M 

number of anchor nodes and N number of normal sensor 

nodes (M < N) deployment in a two dimensional space. The 

model has an objective function 𝑓(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚) which 

defines coordinates of sensor nodes based on the information 

about anchor nodes location, using (16) and (22). 
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FIGURE 4: Average Location Error 

 

The constraints make the evaluated coordinates closer to real 

positions and helps in generating an accurate topology. In this 

case, objective function follows two steps. In first step, the 

normal sensor node will determine its own position based on 

the received signal strength indicator (RSSI) and time of 

arrival (ToA) of incoming signal from the anchor node. In the 

second step, it computes the location of the normal sensor 

node. For performance analysis, the results of EDCQPSO are 

compared with PDQPSO [40], CLQPSO [42], QPSO-CD [43] 

and CSQPSO [44].  With random deployment of sensor nodes 

in localization area, average localization error (ALE) is 

calculated as a standard statistical metric and given by 

𝐴𝐿𝐸 =
∑ √(𝑢𝑖_𝑝𝑟𝑒𝑑−𝑢𝑖_𝑎𝑐𝑡𝑢𝑎𝑙)

2
+(𝑣𝑖_𝑝𝑟𝑒𝑑−𝑣𝑖_𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑁
𝑖=1

𝑁
           (24) 

where (𝑢𝑖_𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑣𝑖_𝑎𝑐𝑡𝑢𝑎𝑙) is the real-time position of the 

node, and (𝑢𝑖_𝑝𝑟𝑒𝑑 , 𝑣𝑖_𝑝𝑟𝑒𝑑) is the node's estimated position. 

The simulations were carried out for 200 m x 200 m with 

200 nodes with random distribution so that M anchor nodes 

can be found. By assuming the Gaussian distributed RSSI 

ranging error and node transmission range of 10m to 40m and   

anchor nodes changing from 20 to 60. Other parameters are 

same as given in Table 5. The results of anchor node versus 

ALE for all four algorithms is as shown in Fig. 4. The 

proposed approach reduces the ALE by a minimum of 47.5%, 

31.5%, 26.37% and 25%, compared to CLQPSO, PDQPSO, 

QPSO-CD and CSQPSO, respectively. It is also observed that 

the position approximation precision for all the approaches is 

high for the higher node densities. 

 
VII. CONCLUSION 

A novel hybrid enhanced differential crossover quantum PSO 

algorithm is proposed for IoT applications where real-time 

processing is required in the presence of multiple realistic 

constraints. Our algorithm uses quantum PSO, differential 

evolution operator, and crossover operator. Performance and 

the proposed algorithm results are validated with thirty 

benchmark functions of IEEE CEC2017 and on ten test 

functions of IEEE CEC2019. The algorithm performance is 

also compared with other existing optimization algorithms and 
the PSO variants. Results of the proposed algorithm have 

smaller fitness values, high precision, and faster convergence. 

The algorithm is used to localize the IoT nodes in smart 

parking application, and the average location error is reduced 

up to 25% compared to the existing algorithms. 
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