77 research outputs found

    Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia

    Get PDF
    Throughout South Asia biomass is commonly used as a fuel source for cooking and heating homes. The smoke from domestic use of these fuels is expected to be a major source of atmospheric particulate matter in the region and needs to be characterized for input in regional source apportionment models and global climate models. Biomass fuel samples including coconut leaves, rice straw, jackfruit branches, dried cowdung patties, and biomass briquettes manufactured from compressed biomass material were obtained from Bangladesh. The fuel samples were burned in a wood stove to collect and characterize the particulate matter emissions. The bulk chemical composition including total organic and elemental carbon, sulfate, nitrate, ammonium and chloride ions, and bulk elements such as potassium and sodium did not show conclusive differences among the biomass samples tested. Unique features, however, exist in the detailed organic characterization of the combustion smoke from the different sources. The organic compound fingerprints of the particulate matter are shown to be distinct from one another and distinct from North American wood fuels. Fecal stanols including 5β-stigmastanol, coprostanol, and cholestanol are found to be good molecular markers for the combustion of cowdung. Additionally, the patterns of methoxyphenols and plant sterols provide a unique signature for each biomass sample and are conducive as source apportionment tracers

    Evaluation of aerosol- and gas-phase tracers for identification of transported biomass burning emissions in an industrially influenced location in Texas, USA

    Get PDF
    As criteria pollutants from anthropogenic emissions have declined in the US in the last 2 decades, biomass burning (BB) emissions are becoming more important for urban air quality. Tracking the transported BB emissions and their impacts is challenging, especially in areas that are also burdened by anthropogenic sources like the Texas Gulf Coast. During the Corpus Christi and San Antonio (CCSA) field campaign in spring 2021, two long-range-transport BB events (BB1 and BB2) were identified. The observed patterns of an absorption Ångström exponent (AAE), a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) BB tracer (f60), equivalent black carbon (eBC), acetonitrile and carbon monoxide (CO) during BB1 and BB2 indicated differences in the mixing of transported BB plumes with local anthropogenic sources. The combined information from HYSPLIT backward-trajectory (BT) and satellite observations revealed that BB1 had mixed influence of transported smoke plumes from fires in central Mexico, the Yucatán Peninsula and the central US, whereas BB2 was influenced by fires in the central US. The estimated transport times of smoke from the Mexican fires and the central US fires to our study site were not too different (48–54 and 24–36 h, respectively), and both events appeared to have undergone similar levels of atmospheric processing, as evident in the elemental ratios of bulk organic aerosol (OA). We observed an aging trend for f44 vs. f60 and f44 vs. f43 as a function of time during BB2 but not during BB1. Positive matrix factorization (PMF) analysis of OA showed that BB1 had a mixture of organics from aged BB emissions with an anthropogenic marine signal, while the oxidized organic compounds from aged BB emissions dominated the aerosols during BB2. The size distribution of aerosol composition revealed distinct characteristics between BB1 and BB2, where BB1 was found to be externally mixed, exhibiting a combination of BB and anthropogenic marine aerosols. On the other hand, BB2 exhibited internal mixing dominated by aged BB aerosol. Our analysis from mobile and stationary measurements highlights that both CO and acetonitrile are likely impacted by local sources even during the BB events and specifically that acetonitrile cannot be used as a unique BB tracer for dilute BB plumes in an industrially influenced location. A suitable volatile organic compound (VOC) tracer would need to be emitted in high concentrations during BB, resistant to degradation during transport, unique to BB and able to be measured in the field. This study effectively demonstrates that AAE and aerosol BB tracers served as precise and effective tracers in these complex emission scenarios. Network deployment of multiwavelength photometers holds promise for enhancing our understanding of BB impacts on air quality and supporting informed decision-making for effective mitigation strategies in locations with mixed sources and influence of dilute BB plumes. To demonstrate the relevance of such an aerosol optical network, we provide evidence of the potential regional impacts of these transported BB events on urban O3 levels using measurements from the surface air quality monitoring network in Texas.</p

    Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling

    Get PDF
    Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond

    Annual variability of ice-nucleating particle concentrations at different Arctic locations

    Get PDF
    Number concentrations of ice-nucleating particles (NINP) in the Arctic were derived from ground-based filter samples. Examined samples had been collected in Alert (Nunavut, northern Canadian archipelago on Ellesmere Island), Utqiaġvik, formerly known as Barrow (Alaska), Ny-Ålesund (Svalbard), and at the Villum Research Station (VRS; northern Greenland). For the former two stations, examined filters span a full yearly cycle. For VRS, 10 weekly samples, mostly from different months of one year, were included. Samples from Ny-Ålesund were collected during the months from March until September of one year. At all four stations, highest concentrations were found in the summer months from roughly June to September. For those stations with sufficient data coverage, an annual cycle can be seen. The spectra of NINP observed at the highest temperatures, i.e., those obtained for summer months, showed the presence of INPs that nucleate ice up to −5&thinsp;∘C. Although the nature of these highly ice-active INPs could not be determined in this study, it often has been described in the literature that ice activity observed at such high temperatures originates from the presence of ice-active material of biogenic origin. Spectra observed at the lowest temperatures, i.e., those derived for winter months, were on the lower end of the respective values from the literature on Arctic INPs or INPs from midlatitude continental sites, to which a comparison is presented herein. An analysis concerning the origin of INPs that were ice active at high temperatures was carried out using back trajectories and satellite information. Both terrestrial locations in the Arctic and the adjacent sea were found to be possible source areas for highly active INPs.</p

    Subjective outcomes after knee arthroplasty

    Full text link
    • …
    corecore