315 research outputs found
Tracking Streamer Blobs Into the Heliosphere
In this paper, we use coronal and heliospheric images from the STEREO
spacecraft to track streamer blobs into the heliosphere and to observe them
being swept up and compressed by the fast wind from low-latitude coronal holes.
From an analysis of their elongation/time tracks, we discover a 'locus of
enhanced visibility' where neighboring blobs pass each other along the line of
sight and their corotating spiral is seen edge on. The detailed shape of this
locus accounts for a variety of east-west asymmetries and allows us to
recognize the spiral of blobs by its signatures in the STEREO images: In the
eastern view from STEREO-A, the leading edge of the spiral is visible as a
moving wavefront where foreground ejections overtake background ejections
against the sky and then fade. In the western view from STEREO-B, the leading
edge is only visible close to the Sun-spacecraft line where the radial path of
ejections nearly coincides with the line of sight. In this case, we can track
large-scale waves continuously back to the lower corona and see that they
originate as face-on blobs.Comment: 15 pages plus 11 figures; figure 6 shows the 'locus of enhanced
visibility', which we call 'the bean'. (accepted by ApJ 4/02/2010
A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO
By exploiting data from the STEREO/heliospheric imagers (HI) we extend a well-established technique developed for coronal analysis by producing time-elongation plots that reveal the nature of solar transient activity over a far more extensive region of the heliosphere than previously possible from coronagraph images. Despite the simplicity of these plots, their power in demonstrating how the plethora of ascending coronal features observed near the Sun evolve as they move antisunward is obvious. The time-elongation profile of a transient tracked by HI can, moreover, be used to establish its angle out of the plane-of-the-sky; an illustration of such analysis reveals coronal mass ejection material that can be clearly observed propagating out to distances beyond 1AU. This work confirms the value of the time-elongation format in identifying/characterising transient activity in the inner heliosphere, whilst also validating the ability of HI to continuously monitor solar ejecta out to and beyond 1A
Solwind observations of coronal mass ejections during 1979-1985
Coronal observations have been processed for parts of each year during the interval 1979-1985. Around sunspot maximum, coronal mass ejections (CMEs) occurred at the rate of approximately 2 per day, and had a wide range of physical and morphological properties. During the recent years of relatively low sunspot number, CMEs occurred at the rate of only 0.2 per day, and were dominated by the class of so-called streamer blowout. These special CMEs maintained a nearly constant occurrence rate of roughly 0.1 per day during the entire interval
An intensity distribution of bright points observed on a CN spectroheliogram
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43717/1/11207_2004_Article_BF00155777.pd
Scattering Polarization in the Chromosphere
Scattering polarization from the photosphere observed close to the solar limb has recently become of interest to study turbulent magnetic fields, abundances, and radiative transfer effects. We extend these studies by measuring the scattering polarization off the limb, i.e. in the chromosphere. However, instrumental effects are much more pronounced and more complicated than those affecting on-disk measurements. In particular, scattered light from the telescope mirrors leads to a new type of instrumental polarization that we describe in detail. The differences between the linearly polarized spectra on the disk and off the limb are often very substantial. Here we show the profiles of HeI D(sub 3), the OI triplet at 777 nm, and the Nal D lines. The change in the latter is in reasonable agreement with the recent modeling efforts of atomic polarization in the lower level by Landi Degl'Innocenti (1998)
Associations between coronal mass ejections and interplanetary shocks
Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS
A comparison of mean density and microscale density fluctuations in a CME at 10 R ⊙
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94990/1/grl15395.pd
Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
We present a method for tracking and predicting the propagation and evolution
of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO
satellites. By empirically modeling the material between the inner core and
leading edge of a CME as an expanding, outward propagating ellipsoid, we track
its evolution in three-dimensional space. Though more complex empirical CME
models have been developed, we examine the accuracy of this relatively simple
geometric model, which incorporates relatively few physical assumptions,
including i) a constant propagation angle and ii) an azimuthally symmetric
structure. Testing our ellipsoid model developed herein on three separate CMEs,
we find that it is an effective tool for predicting the arrival of density
enhancements and the duration of each event near 1 AU. For each CME studied,
the trends in the trajectory, as well as the radial and transverse expansion
are studied from 0 to ~.3 AU to create predictions at 1 AU with an average
accuracy of 2.9 hours.Comment: 18 pages, 11 figure
- …