22 research outputs found

    Emerging issues and current trends in assistive technology use 2007-1010: practising, assisting and enabling learning for all

    Get PDF
    Following an earlier review in 2007, a further review of the academic literature relating to the uses of assistive technology (AT) by children and young people was completed, covering the period 2007-2011. As in the earlier review, a tripartite taxonomy: technology uses to train or practise, technology uses to assist learning and technology uses to enable learning, was used in order to structure the findings. The key markers for research in this field and during these three years were user involvement, AT on mobile mainstream devices, the visibility of AT, technology for interaction and collaboration, new and developing interfaces and inclusive design principles. The paper concludes by locating these developments within the broader framework of the Digital Divide

    Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole

    Get PDF
    BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio

    Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole

    Get PDF
    BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio

    Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018

    Get PDF
    The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data

    Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018

    Get PDF
    The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data

    Rheumatoid arthritis - clinical aspects: 134. Predictors of Joint Damage in South Africans with Rheumatoid Arthritis

    Get PDF
    Background: Rheumatoid arthritis (RA) causes progressive joint damage and functional disability. Studies on factors affecting joint damage as clinical outcome are lacking in Africa. The aim of the present study was to identify predictors of joint damage in adult South Africans with established RA. Methods: A cross-sectional study of 100 black patients with RA of >5 years were assessed for joint damage using a validated clinical method, the RA articular damage (RAAD) score. Potential predictors of joint damage that were documented included socio-demographics, smoking, body mass index (BMI), disease duration, delay in disease modifying antirheumatic drug (DMARD) initiation, global disease activity as measured by the disease activity score (DAS28), erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and autoantibody status. The predictive value of variables was assessed by univariate and stepwise multivariate regression analyses. A p value <0.05 was considered significant. Results: The mean (SD) age was 56 (9.8) years, disease duration 17.5 (8.5) years, educational level 7.5 (3.5) years and DMARD lag was 9 (8.8) years. Female to male ratio was 10:1. The mean (SD) DAS28 was 4.9 (1.5) and total RAAD score was 28.3 (12.8). The mean (SD) BMI was 27.2 kg/m2 (6.2) and 93% of patients were rheumatoid factor (RF) positive. More than 90% of patients received between 2 to 3 DMARDs. Significant univariate predictors of a poor RAAD score were increasing age (p = 0.001), lower education level (p = 0.019), longer disease duration (p < 0.001), longer DMARD lag (p = 0.014), lower BMI (p = 0.025), high RF titre (p < 0.001) and high ESR (p = 0.008). The multivariate regression analysis showed that the only independent significant predictors of a higher mean RAAD score were older age at disease onset (p = 0.04), disease duration (p < 0.001) and RF titre (p < 0.001). There was also a negative association between BMI and the mean total RAAD score (p = 0.049). Conclusions: Patients with longstanding established RA have more severe irreversible joint damage as measured by the clinical RAAD score, contrary to other studies in Africa. This is largely reflected by a delay in the initiation of early effective treatment. Independent of disease duration, older age at disease onset and a higher RF titre are strongly associated with more joint damage. The inverse association between BMI and articular damage in RA has been observed in several studies using radiographic damage scores. The mechanisms underlying this paradoxical association are still widely unknown but adipokines have recently been suggested to play a role. Disclosure statement: C.I. has received a research grant from the Connective Tissue Diseases Research Fund, University of the Witwatersrand. All other authors have declared no conflicts of interes

    Transition, Integration and Convergence. The Case of Romania

    Full text link

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    Design and performance of wide-band corrugated walls for the BICEP Array detector modules at 30/40 GHz

    No full text
    BICEP Array is a degree-scale Cosmic Microwave Background (CMB) experiment that will search for primordial B-mode polarization while constraining Galactic foregrounds. BICEP Array will be comprised of four receivers to cover a broad frequency range with channels at 30/40, 95, 150 and 220/270 GHz. The first low-frequency receiver will map synchrotron emission at 30 and 40 GHz and will deploy to the South Pole at the end of 2019. In this paper, we give an overview of the BICEP Array science and instrument, with a focus on the detector module. We designed corrugations in the metal frame of the module to suppress unwanted interactions with the antenna-coupled detectors that would otherwise deform the beams of edge pixels. This design reduces the residual beam systematics and temperature-to-polarization leakage due to beam steering and shape mismatch between polarized beam pairs. We report on the simulated performance of single- and wide-band corrugations designed to minimize these effects. Our optimized design alleviates beam differential ellipticity caused by the metal frame to about 7% over 57% bandwidth (25 to 45 GHz), which is close to the level due the bare antenna itself without a metal frame. Initial laboratory measurements are also presented
    corecore