3,867 research outputs found
Device for dispersal of micrometer- and submicrometer-sized particles in vaccum
A simple, versatile device for dispersing micrometer‐ and submicrometer-sized particles in vacuum is described. The source allows control of particle size (0.5 μm≤l≤200 μm) and particle flux density up to roughly 107 cm−2 s−1. Several types of microparticles were successfully dispersed
Coherent control of photocurrent in a strongly scattering photoelectrochemical system
A fundamental issue that limits the efficiency of many photoelectrochemical
systems is that the photon absorption length is typically much longer than the
electron diffusion length. Various photon management schemes have been
developed to enhance light absorption; one simple approach is to use randomly
scattering media to enable broadband and wide-angle enhancement. However, such
systems are often opaque, making it difficult to probe photo-induced processes.
Here we use wave interference effects to modify the spatial distribution of
light inside a highly-scattering dye-sensitized solar cell to control photon
absorption in a space-dependent manner. By shaping the incident wavefront of a
laser beam, we enhance or suppress photocurrent by increasing or decreasing
light concentration on the front side of the mesoporous photoanode where the
collection efficiency of photoelectrons is maximal. Enhanced light absorption
is achieved by reducing reflection through the open boundary of the photoanode
via destructive interference, leading to a factor of two increase in
photocurrent. This approach opens the door to probing and manipulating
photoelectrochemical processes in specific regions inside nominally opaque
media.Comment: 21 pages, 4 figures, in submission. The first two authors contributed
equally to this paper, and should be regarded as co-first author
The role of planets in shaping planetary nebulae
In 1997 Soker laid out a framework for understanding the formation and
shaping of planetary nebulae (PN). Starting from the assumption that
non-spherical PN cannot be formed by single stars, he linked PN morphologies to
the binary mechanisms that may have formed them, basing these connections
almost entirely on observational arguments. In light of the last decade of
discovery in the field of PN, we revise this framework, which, although
simplistic, can still serve as a benchmark against which to test theories of PN
origin and shaping. Within the framework, we revisit the role of planets in
shaping PN. Soker invoked a planetary role in shaping PN because there are not
enough close binaries to shape the large fraction of non-spherical PN. In this
paper we adopt a model whereby only ~20% of all 1-8 solar mass stars make a PN.
This reduces the need for planetary shaping. Through a propagation of
percentages argument, and starting from the assumption that planets can only
shape mildly elliptical PN, we conclude, like in Soker, that ~20% of all PN
were shaped via planetary and other substellar interactions but we add that
this corresponds to only ~5% of all 1-8 solar mass stars. This may be in line
with findings of planets around main sequence stars. PN shaping by planets is
made plausible by the recent discovery of planets that have survived
interactions with red giant branch (RGB) stars. Finally, we conclude that of
the ~80% of 1-8 solar mass stars that do not make a PN, about one quarter do
not even ascend the AGB due to interactions with stellar and substellar
companions, while three quarters ascend the AGB but do not make a PN. Once
these stars leave the AGB they evolve normally and can be confused with
post-RGB, extreme horizontal branch stars. We propose tests to identify them.Comment: 23 pages, accepted by PAS
J D Bernal: philosophy, politics and the science of science
This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position
J D Bernal: philosophy, politics and the science of science
This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position
Maximal work extraction from quantum systems
Thermodynamics teaches that if a system initially off-equilibrium is coupled
to work sources, the maximum work that it may yield is governed by its energy
and entropy. For finite systems this bound is usually not reachable. The
maximum extractable work compatible with quantum mechanics (``ergotropy'') is
derived and expressed in terms of the density matrix and the Hamiltonian. It is
related to the property of majorization: more major states can provide more
work. Scenarios of work extraction that contrast the thermodynamic intuition
are discussed, e.g. a state with larger entropy than another may produce more
work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex
Evolution of Mass Outflow in Protostars
We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in
mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in
far-infrared [O I] emission. We use the results to derive their mass outflow
rates. Thereby we observe a strong correlation of mass outflow rates with
bolometric luminosity, and with the inferred mass accretion rates of the
central objects, which continues through the Class 0 range the trend observed
in Class II young stellar objects. Along this trend from large to small
mass-flow rates, the different classes of young stellar objects lie in the
sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the
trend is an evolutionary sequence in which mass outflow and accretion rates
decrease together with increasing age, while maintaining rough proportionality.
The survey results include two which are key tests of magnetocentrifugal
outflow-acceleration mechanisms: the distribution of the outflow/accretion
branching ratio b, and limits on the distribution of outflow speeds. Neither
rule out any of the three leading outflow-acceleration,
angular-momentum-ejection mechanisms, but they provide some evidence that disk
winds and accretion-powered stellar winds (APSWs) operate in many protostars.
An upper edge observed in the branching-ratio distribution is consistent with
the upper bound of b = 0.6 found in models of APSWs, and a large fraction
(0.31) of the sample have branching ratio sufficiently small that only disk
winds, launched on scales as large as several AU, have been demonstrated to
account for them.Comment: Version submitted to ApJ: 36 pages, 3 tables, 8 figure
- …