29 research outputs found

    Optimizing the Regularization in Size-Consistent Second-Order Brillouin-Wigner Perturbation Theory

    Full text link
    Despite its simplicity and relatively low computational cost, second-order M{\o}ller-Plesset perturbation theory (MP2) is well-known to overbind noncovalent interactions between polarizable monomers and some organometallic bonds. In such situations, the pairwise-additive correlation energy expression in MP2 is inadequate. Although energy-gap dependent amplitude regularization can substantially improve the accuracy of conventional MP2 in these regimes, the same regularization parameter worsens the accuracy for small molecule thermochemistry and density-dependent properties. Recently, we proposed a repartitioning of Brillouin-Wigner perturbation theory that is size-consistent to second order (BW-s2), and a free parameter ({\alpha}) was set to recover the exact dissociation limit of H2_2 in a minimal basis set. Alternatively {\alpha} can be viewed as a regularization parameter, where each value of {\alpha} represents a valid variant of BW-s2, which we denote as BW-s2({\alpha}). In this work, we semi-empirically optimize {\alpha} for noncovalent interactions, thermochemistry, alkane conformational energies, electronic response properties, and transition metal datasets, leading to improvements in accuracy relative to the ab initio parameterization of BW-s2 and MP2. We demonstrate that the optimal {\alpha} parameter ({\alpha} = 4) is more transferable across chemical problems than energy-gap-dependent regularization parameters. This is attributable to the fact that the BW-s2({\alpha}) regularization strength depends on all of the information encoded in the t amplitudes rather than just orbital energy differences. While the computational scaling of BW-s2({\alpha}) is iterative O(N5)\mathcal{O}(N^5), this effective and transferable approach to amplitude regularization is a promising route to incorporate higher-order correlation effects at second-order cost.Comment: 7 pages main text, 7 pages supporting information, 10 figure

    Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury

    Get PDF
    Problems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation

    The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53

    Get PDF
    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential

    Cell Competition During Growth and Regeneration

    No full text
    Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases
    corecore