112 research outputs found

    Incidental threat during visuospatial working memory in adolescent anxiety: an emotional memory-guided saccade task

    Get PDF
    BackgroundPediatric anxiety disorders are among the most common psychiatric mental illnesses in children and adolescents, and are associated with abnormal cognitive control in emotional, particularly threat, contexts. In a series of studies using eye movement saccade tasks, we reported anxiety-related alterations in the interplay of inhibitory control with incentives, or with emotional distractors. The present study extends these findings to working memory (WM), and queries the interaction of spatial WM with emotional stimuli in pediatric clinical anxiety. MethodsParticipants were 33 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed a novel eye movement task, an affective variant of the memory-guided saccade task. This task assessed the influence of incidental threat on spatial WM processes during high and low cognitive load. ResultsHealthy but not anxious children/adolescents showed slowed saccade latencies during incidental threat in low-load but not high-load WM conditions. No other group effects emerged on saccade latency or accuracy. ConclusionsThe current data suggest a differential pattern of how emotion interacts with cognitive control in healthy youth relative to anxious youth. These findings extend data from inhibitory processes, reported previously, to spatial WM in pediatric anxiety

    The structural basis of RNA-catalyzed RNA polymerization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.Cataloged from PDF version of thesis.Includes bibliographical references.The Class I ligase is an artificial ribozyme that catalyzes a reaction chemically identical to a single turnover of RNA-dependent RNA polymerization. Such an activity would have been requisite for the emergence of a self-replicase ribozyme, an enzyme that, according to the RNA World hypothesis, would be fundamental for the emergence of life. Demonstrating the plausibility of RNA-catalyzed self-replication, the Class I ligase catalytic machinery was previously harnessed to produce general RNA polymerase ribozymes. Hence, this ligase represents a robust model system for studying both the potential role RNA may have played in the origins of life and RNA catalysis in general. Through a combination of crystallographic and biochemical experiments, we have sought to elucidate the structure and mechanism of this ribozyme. As a starting point for our experiments, the crystal structure of the self-ligated product was solved to 3.0 Angstrom resolution, revealing a tripodal architecture in which three helical domains converge in the vicinity of the ligation junction. A handful of tertiary interactions decorate this tripod scaffold; among them were two instances of a novel motif, the A-minor triad. The structure elucidated interactions that recognize and bind the primer-template duplex and those that position the reaction electrophile. It furthermore revealed functional groups that compose the active site. Biochemical evidence and the position of these groups lead us to propose a reaction mechanism similar to that used by proteinaceous polymerases. Using a slowly reacting mutant, 3.05-3.15 Angstrom crystal structures were solved of unreacted, kinetically trapped ligase-substrate complexes bound to different metal ions. Comparison of the Ca2+- and Mg2+-bound structures explains the preference of the ligase for Mg 2+. Moreover, these structures revealed features missing in the product structure: interactions to the 5'-triphosphate and an active site catalytic metal ion. While this metal is positioned in a manner similar to the canonical "Metal A" of proteinaceous polymerases, the role of "Metal B" might have been supplanted by functional groups on the RNA. Kinetic isotope experiments and atomic mutagenesis of two active site functional groups imply that they may act in concert to electrostatically aid transition-state stabilization.by David M. Shechner.Ph.D

    Brief Training to Modify the Breadth of Attention Influences the Generalisation of Fear

    Get PDF
    Background: Generalisation of fear from dangerous to safe stimuli is an important process associated with anxiety disorders. However, factors that contribute towards fear (over)-generalisation remain poorly understood. The present investigation explored how attentional breadth (global/holistic and local/analytic) influences fear generalisation and, whether people trained to attend in a global vs. local manner show more or less generalisation. Methods: Participants (N = 39) were shown stimuli which comprised of large ‘global’ letters and smaller ‘local’ letters (e.g. an F comprised of As) and they either had to identify the global or local letter. Participants were then conditioned to fear a face by pairing it with an aversive scream (75% reinforcement schedule). Perceptually similar, but safe, faces, were then shown. Self-reported fear levels and skin conductance responses were measured. Results: Compared to participants in Global group, participants in Local group demonstrated greater fear for dangerous stimulus (CS +) as well as perceptually similar safe stimuli. Conclusions: Participants trained to attend to stimuli in a local/analytical manner showed higher magnitude of fear acquisition and generalisation than participants trained to attend in a global/holistic way. Breadth of attentional focus can influence overall fear levels and fear generalisation and this can be manipulated via attentional training

    Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans

    Get PDF
    Influential theories implicate variations in the mechanisms supporting threat learning in the severity of anxiety symptoms. We use computational models of associative learning in conjunction with structural imaging to explicate links among the mechanisms underlying threat learning, their neuroanatomical substrates, and anxiety severity in humans. We recorded skin-conductance data during a threat-learning task from individuals with and without anxiety disorders (N=251; 8-50 years; 116 females). Reinforcement-learning model variants quantified processes hypothesized to relate to anxiety: threat conditioning, threat generalization, safety learning, and threat extinction. We identified the best-fitting models for these processes and tested associations among latent learning parameters, whole-brain anatomy, and anxiety severity. Results indicate that greater anxiety severity related specifically to slower safety learning and slower extinction of response to safe stimuli. Nucleus accumbens gray-matter volume moderated learning-anxiety associations. Using a modeling approach, we identify computational mechanisms linking threat learning and anxiety severity and their neuroanatomical substrates

    A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination

    Get PDF
    RNA crystallization and phasing represent major bottlenecks in RNA structure determination. Seeking to exploit antibody fragments as RNA crystallization chaperones, we have used an arginine-enriched synthetic Fab library displayed on phage to obtain Fabs against the class I ligase ribozyme. We solved the structure of a Fab–ligase complex at 3.1-Å resolution using molecular replacement with Fab coordinates, confirming the ribozyme architecture and revealing the chaperone's role in RNA recognition and crystal contacts. The epitope resides in the GAAACAC sequence that caps the P5 helix, and this sequence retains high-affinity Fab binding within the context of other structured RNAs. This portable epitope provides a new RNA crystallization chaperone system that easily can be screened in parallel to the U1A RNA-binding protein, with the advantages of a smaller loop and Fabs′ high molecular weight, large surface area and phasing power.National Institutes of Health (U.S.) (GM61835

    Arginine Cofactors on the Polymerase Ribozyme

    Get PDF
    The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Get PDF
    Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
    • …
    corecore