39 research outputs found

    Analysis of the Integration of DFM Techniques and Effective Machining Parameter Selection in Metal Parts Manufacturing

    Get PDF
    This dissertation investigates the minimization of part design with self-locating features. The research focuses primarily on self-fastening characteristics, standardization of parts, and minimal use of fasteners. Further, the present research studies the design for base parts in the construction of a moving joint system, in order to locate potential part and system design improvements. This process may then be extended to industrial applications in the manufacturing industry. Relatively little work to date has examined the significance of Design for Manufacturing Techniques (DFMT), with their inherent machine element systems and machining parameters to investigate which DFMT has the most influence on cost reduction and increasing throughput, and under which circumstances. As such, this dissertation analyzes the inter-operational and synergistic elements of the DFMT, machine element systems, and machining parameters. The parametric specifications for the DFMT are examined and integrated with the cost and productivity-related information. In sum, this research applies DFMT to product design. The trade-off between cost of manufacturing and productivity in terms of DFM alternatives was subject to preliminary model development and sensitivity analysis. For each DFMT and associated machine element systems and Machining parameters, process planning was used effectively with computer-aided tools to enhance the evaluation impact of the dialogue between the design and manufacturing functions. Expert systems and systematic algorithms are inherently incorporated into the software tools used herein. Generative process planning software is used to measure and analyze sensitivity in plan effectiveness, particularly where material property attributes are changed. The shift that occurs according to process plan attributes is explored. These attributes are presented by manufacturing cost and production rate with respect to variations in specific material properties. The research analyzes four DFMT: Modifying the selection of raw material Modifying quality Modifying geometry Modifying the selection of process/es In terms of organizing and evaluating the work, a systematic algorithm was developed, discussed, and tested in this dissertation. This algorithm has sequenced elements to investigate and analyze each DFMT. This analysis identifies several potential process plans, from which the plan with the lowest projected cost and highest production rate is selected and constructed. The developed process plans illustrate the importance of alternative DFMT, without impacting product functionality. Each process plan attempts to decrease production cost, maintain quality, and increase throughput. The results of these plans show their respective effectiveness in relation to part utilization, process, and system-level parameters (such as surface finish, tolerance, heat treated condition of the material, geometry, material hardness, melting point, production quantity, cutting tools, cutting fluids, cutting conditions, and machine tools). The criteria for effectiveness include machining cost, tool cost, and throughput. From this data, the current study determines the most appropriate DFMT and examines underlying alternate machine element systems and machining parameters for each process plan. The effects of DFMT and inherent use of varying machine element systems and machining parameters on cost and productivity-based objectives are also examined. This enables exploration of the selected DFMT choice, according to effective cost reduction and production rate improvement for varying product design. The modified process plan is then compared to the original process plan to highlight areas of improvement. In this comparison, the results of DFMT analysis show significant influence on cost reduction and production rates. These findings suggest that further beneficial outcomes and variety might be obtained by applying this algorithm

    An Investigation of the Metal Additive Manufacturing Issues and Perspective for Solutions Approach

    Get PDF
    Metal Additive Manufacturing (MAM) is delivering a new revolution in producing three-dimensional parts from metal-based material. MAM can fabricate metallic parts with complex geometry. However, this type of Additive Manufacturing (AM) is also impacted by several issues, challenges, and defects, which influence product quality and process sustainability. In this chapter, a review has been made on the types of small to medium-sized metallic parts currently manufactured using the MAM method. Then, investigation was undertaken to analyze the defects, challenges, and issues inherent to the design for additive manufacturing, by using MAM method. MAM-related obstacles are discussed in depth in this chapter and these obstacles occur in all size of metal printed parts. The reasons and solutions presented by previous researchers of these obstacles are discussed as well. A potential approach based on the author’s knowledge and analysis for solving these issues and challenges is suggested in this chapter. Based on the author’s conclusion, the MAM is not limited by part size, material, or geometry. In order to validate the potential solutions developed by the author of this work, performing actual MAM process is required and a local visit to manufacturing factories are also important to visualize these challenges and issues

    A low frequency hybrid harvester with ring magnets

    Get PDF
    Although many hybrid EH devices had been investigated by researchers, their performances at different operating resonance frequencies were not reported. Radial magnetic field was reported as the most efficient architecture to use in electromagnetic energy conversion, this was utilized in the design of a low frequency and efficient hybrid harvester comprising piezoelectric (PZT) and electromagnetic generators. FE simulation was used to obtain the magnetic field, design the coil and locate its position relative to the magnets. The electromagnetic generator consists of ring magnets which act as proof mass, with a hanging coil inside. The harvester was tested at frequency range of (34-40) Hz, produced maximum power of (710)μW. The maximum normalized power density and maximum efficiency of the harvester are (2.272) mW/cm3/g2 and (30.1%) respectively, at frequency of 36Hz and induced acceleration of (0.25)g. The new hybrid harvester has a higher normalized power density compared with others

    Mathematical Modeling for Nanofluids Simulation: A Review of the Latest Works

    Get PDF
    Exploiting nanofluids in thermal systems is growing day by day. Nanofluids having ultrafine solid particles promise new working fluids for application in energy devices. Many studies have been conducted on thermophysical properties as well as heat and fluid flow characteristics of nanofluids in various systems to discover their advantages compared to conventional working fluids. The main aim of this study is to present the latest developments and progress in the mathematical modeling of nanofluids flow. For this purpose, a comprehensive review of different nanofluid computational fluid dynamics (CFD) approaches is carried out. This study provides detailed information about the commonly used formulations as well as techniques for mathematical modeling of nanofluids. In addition, advantages and disadvantages of each method are rendered to find the most appropriate approach, which can give valid results

    HEMATOLOGICAL VARIABLES STUDY ON EMPLOYEES BLOOD IN PETROL STATIONS IN RAMADI CITY

    No full text
    The purpose of the present study is to find the impact of benzene and its components on some aspects of physiological parameters in the blood of workers in the filling stations as samples were collected study and synthesized from (60) a sample of the blood of people working in filling stations and in direct contact with gasoline and (60) a sample of the blood of people who do not work in gas stations and considered as a control group. The laboratory tests was conducted and included: blood tests include a Complete Blood Count , WBC , RBC , Hb , PCV , ESR and Plat. count. The results of the study showed the following :The results showed a significant effect at the level of probability (P <0.05) in the Red blood cell count and packed cell volume and platelet count, white blood cells count and (DLC) as neutral , lymphoma ,acidophilic and basophilic as well as in the indicators of red blood cell (MCV, MCHC) in the blood of workers, compared with the control group. Non-significant differences in the values of white blood cell counts erythrocyte sedimentation rate and hemoglubin and monocyte
    corecore