649 research outputs found

    Wave Decay in MHD Turbulence

    Full text link
    We present a model for nonlinear decay of the weak wave in three-dimensional incompressible magnetohydrodynamic (MHD) turbulence. We show that the decay rate is different for parallel and perpendicular waves. We provide a general formula for arbitrarily directed waves and discuss particular limiting cases known in the literature. We test our predictions with direct numerical simulations of wave decay in three-dimensional MHD turbulence, and discuss the influence of turbulent damping on the development of linear instabilities in the interstellar medium and on other important astrophysical processes.Comment: 7 pages, 5 figures, to appear in ApJ 67

    Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum

    Full text link
    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas for the wave phase structure function, visibility, angular broadening, diffraction-pattern length scales, and scintillation time scale for arbitrary distributions of turbulence along the line of sight, and specialize these formulas to idealized cases.Comment: 25 pages, 3 figures, submitted to Ap

    Scaling law of the plasma turbulence with non conservative fluxes

    Full text link
    It is shown that in the presence of anisotropic kinetic dissipation existence of scale invariant power law spectrum of plasma turbulence is possible. Obtained scale invariant spectrum is not associated with the constant flux of any physical quantity. Application of the model to the high frequency part of the solar wind turbulence is discussed.Comment: Phys Rev E, accepte

    Astrophysical Gyrokinetics: Basic Equations and Linear Theory

    Full text link
    Magnetohydrodynamic (MHD) turbulence is encountered in a wide variety of astrophysical plasmas, including accretion disks, the solar wind, and the interstellar and intracluster medium. On small scales, this turbulence is often expected to consist of highly anisotropic fluctuations with frequencies small compared to the ion cyclotron frequency. For a number of applications, the small scales are also collisionless, so a kinetic treatment of the turbulence is necessary. We show that this anisotropic turbulence is well described by a low frequency expansion of the kinetic theory called gyrokinetics. This paper is the first in a series to examine turbulent astrophysical plasmas in the gyrokinetic limit. We derive and explain the nonlinear gyrokinetic equations and explore the linear properties of gyrokinetics as a prelude to nonlinear simulations. The linear dispersion relation for gyrokinetics is obtained and its solutions are compared to those of hot-plasma kinetic theory. These results are used to validate the performance of the gyrokinetic simulation code {\tt GS2} in the parameter regimes relevant for astrophysical plasmas. New results on global energy conservation in gyrokinetics are also derived. We briefly outline several of the problems to be addressed by future nonlinear simulations, including particle heating by turbulence in hot accretion flows and in the solar wind, the magnetic and electric field power spectra in the solar wind, and the origin of small-scale density fluctuations in the interstellar medium.Comment: emulateapj, 24 pages, 10 figures, revised submission to ApJ: references added, typos corrected, reorganized and streamline

    Dust Dynamics in Compressible MHD Turbulence

    Full text link
    We calculate the relative grain-grain motions arising from interstellar magnetohydrodynamic (MHD) turbulence. The MHD turbulence includes both fluid motions and magnetic fluctuations. While the fluid motions accelerate grains through hydro-drag, the electromagnetic fluctuations accelerate grains through resonant interactions. We consider both incompressive (Alfv\'{e}n) and compressive (fast and slow) MHD modes and use descriptions of MHD turbulence obtained in Cho & Lazarian (2002). Calculations of grain relative motion are made for realistic grain charging and interstellar turbulence that is consistent with the velocity dispersions observed in diffuse gas, including cutoff of the turbulence from various damping processes. We show that fast modes dominate grain acceleration, and can drive grains to supersonic velocities. Grains are also scattered by gyroresonance interactions, but the scattering is less important than acceleration for grains moving with sub-Alfv\'{e}nic velocities. Since the grains are preferentially accelerated with large pitch angles, the supersonic grains will be aligned with long axes perpendicular to the magnetic field. We compare grain velocities arising from MHD turbulence with those arising from photoelectric emission, radiation pressure and H2_{2} thrust. We show that for typical interstellar conditions turbulence should prevent these mechanisms from segregating small and large grains. Finally, gyroresonant acceleration is bound to preaccelerate grains that are further accelerated in shocks. Grain-grain collisions in the shock may then contribute to the overabundance of refractory elements in the composition of galactic cosmic rays.Comment: 15 pages, 17 figure

    Spectral energy dynamics in magnetohydrodynamic turbulence

    Full text link
    Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 102431024^3 collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, EkR=∣EkM−EkK∣E_k^\mathrm{R}=|E_k^\mathrm{M}-E_k^\mathrm{K}|, and total energy, Ek=EkK+EkME_k=E^\mathrm{K}_k+E^\mathrm{M}_k, are observed to scale self-similarly in the inertial range as EkR∼k−7/3E_k^\mathrm{R}\sim k^{-7/3}, Ek∼k−5/3E_k\sim k^{-5/3} (isotropic case) and Ek⊥R∼k⊥−2E^\mathrm{R}_{k_\perp}\sim k_\perp^{-2}, Ek⊥∼k⊥−3/2E_{k_\perp}\sim k_\perp^{-3/2} (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasi-normal Markovian (EDQNM) closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfv\'en effect yields EkR∼kEk2E_k^\mathrm{R}\sim k E^2_k which is confirmed by the simulations.Comment: accepted for publication by PR

    Particle acceleration by slow modes in strong compressible MHD turbulence, with application to solar flares

    Full text link
    Energetic particles that undergo strong pitch-angle scattering and diffuse through a plasma containing strong compressible MHD turbulence undergo diffusion in momentum space with diffusion coefficient Dp. In this paper, the contribution of slow modes to Dp is calculated assuming the rms turbulent velocity is of order the Alfven speed. The energy spectrum of accelerated particles is derived assuming slow modes make the dominant contribution to Dp, taking into account Coulomb losses and particle escape from the acceleration region with an energy-independent escape time. The results are applied to solar flares.Comment: 19 pages, 3 figures, accepted for publication in Ap

    Particle Heating by Alfvenic Turbulence in Hot Accretion Flows

    Get PDF
    Recent work on Alfvenic turbulence by Goldreich & Sridhar (1995; GS) suggests that the energy cascades almost entirely perpendicular to the local magnetic field. As a result, the cyclotron resonance is unimportant in dissipating the turbulent energy. Motivated by the GS cascade, we calculate the linear collisionless dissipation of Alfven waves with frequencies much less than the proton cyclotron frequency, but with perpendicular wavelengths of order the Larmor radius of thermal protons. In plasmas appropriate to hot accretion flows (proton temperature much greater than electron temperature) the dissipated Alfven wave energy primarily heats the protons. For a plasma with \beta \lsim 5, however, where β\beta is the ratio of the gas pressure to the magnetic pressure, the MHD assumptions utilized in the GS analysis break down before most of the energy in Alfven waves is dissipated; how the cascade then proceeds is unclear. Hot accretion flows, such as advection dominated accretion flows (ADAFs), are expected to contain significant levels of MHD turbulence. This work suggests that, for \beta \gsim 5, the Alfvenic component of such turbulence primarily heats the protons. Significant proton heating is required for the viability of ADAF models. We contrast our results on particle heating in ADAFs with recent work by Bisnovatyi-Kogan & Lovelace (1997).Comment: 35 pages (Latex), 4 Figures. Submitted to Ap

    The Milky Way's Kiloparsec Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow

    Full text link
    We apply a wind model, driven by combined cosmic-ray and thermal-gas pressure, to the Milky Way, and show that the observed Galactic diffuse soft X-ray emission can be better explained by a wind than by previous static gas models. We find that cosmic-ray pressure is essential to driving the observed wind. Having thus defined a "best-fit" model for a Galactic wind, we explore variations in the base parameters and show how the wind's properties vary with changes in gas pressure, cosmic-ray pressure and density. We demonstrate the importance of cosmic rays in launching winds, and the effect cosmic rays have on wind dynamics. In addition, this model adds support to the hypothesis of Breitschwerdt and collaborators that such a wind may help explain the relatively small gradient observed in gamma-ray emission as a function of galactocentric radius.Comment: 14 pages, 11 figures; Accepted to Ap

    Measurement of the e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- cross section with the CMD-3 detector at the VEPP-2000 collider

    Get PDF
    The process e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb−1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+e−e^+e^- collider. Using about 24000 selected events, the e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of K+K−π+π−K^+K^-\pi^+\pi^- production dynamics has been performed
    • …
    corecore