30 research outputs found

    Extent and Causes of Chesapeake Bay Warming

    Get PDF
    Coastal environments such as the Chesapeake Bay have long been impacted by eutrophication stressors resulting from human activities, and these impacts are now being compounded by global warming trends. However, there are few studies documenting long-term estuarine temperature change and the relative contributions of rivers, the atmosphere, and the ocean. In this study, Chesapeake Bay warming, since 1985, is quantified using a combination of cruise observations and model outputs, and the relative contributions to that warming are estimated via numerical sensitivity experiments with a watershed–estuarine modeling system. Throughout the Bay’s main stem, similar warming rates are found at the surface and bottom between the late 1980s and late 2010s (0.02 +/- 0.02C/year, mean +/- 1 standard error), with elevated summer rates (0.04 +/- 0.01C/year) and lower rates of winter warming (0.01 +/- 0.01C/year). Most (~85%) of this estuarine warming is driven by atmospheric effects. The secondary influence of ocean warming increases with proximity to the Bay mouth, where it accounts for more than half of summer warming in bottom waters. Sea level rise has slightly reduced summer warming, and the influence of riverine warming has been limited to the heads of tidal tributaries. Future rates of warming in Chesapeake Bay will depend not only on global atmospheric trends, but also on regional circulation patterns in mid-Atlantic waters, which are currently warming faster than the atmosphere. Supporting model data available at: https://doi.org/10.25773/c774-a36

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    The Lactococcus lactis sex-factor aggregation gene cluA

    No full text
    International audienc

    Molecular analysis of the Lactococcus lactis sex factor

    No full text
    International audienc

    Using membrane stress to our advantage

    No full text
    The nature of the bilayer motif coupled with the ability of lipids and proteins to diffuse freely through this structure is crucial to the viability of cells and their ability to compartmentalize domains contained therein. It seems surprising to find then that biological as well as model membranes exist in a dynamic state of mechanical stress. The stresses within such membranes are surprisingly large, typically reaching up to 50 atm (1 atm=101.325 kPa) at the core of the membrane and vary as a function of depth. The uneven distribution of lateral pressures within monolayer leaflets causes them to bend away from or towards the water interface. This can result in the formation of complex, self-assembled mesophases, many of which occur in vivo. Our knowledge of the principles underlying membrane mechanics has reached the point where we are now able to manipulate them and create nano-structures with reasonable predictability. In addition, they can be used both to explain and control the partitioning of amphipathic proteins on to membranes. The dependence of the dynamics of membrane-bound proteins and the chemical reactivity of amphipathic drug molecules on membrane stresses suggests that Nature itself takes advantage of this. Understanding and manipulating these internal forces will be a key element in creating self-assembled, biocompatible, nanoscale cell-like systems
    corecore