76 research outputs found

    GENETIC CONTROL OF THE IMMUNE RESPONSE TO STAPHYLOCOCCAL NUCLEASE : I. IR-NASE: CONTROL OF THE ANTIBODY RESPONSE TO NUCLEASE BY THEIR REGION OF THE MOUSEH-2 COMPLEX

    Get PDF
    A number of inbred and congenic resistant strains of mice were immunized with staphylococcal nuclease (Nase). Antibody responses were measured in the sera of the animals by a sensitive method involving inhibition of enzymatic hydrolysis of DNA, High responder strains included A/J, DBA/2, BALB/c, AKR/J, C57BR, and SJL/J. DBA/1 and C57BL/6 mice were low responders. The strain distribution of anti-Nase response potential was compatible with the relevant immune response gene(s) being linked to the murine major histocompatibility complex. Linkage of this response to H-2 was demonstrated by the findings that: (a) the congenic C3H/HeJ and C3H.SW mice were respectively high and low responders; (b) the congenic lines B10.A and B10.D2 were high responders, whereas the C57BL/10 strain was a poor responder; and (c) anti-Nase response potential of F2 progeny from DBA/1 x SJL/J matings correlated with their H-2 type. Three B10.A recombinant lines were used to map this Ir gene within H-2. B10.A(4R) was a high responder to Nase, whereas B10.A(2R) and B10.A(5R) were both low responders. We wish to propose the name Ir-Nase for the gene(s) controlling antibody responsiveness to this immunogen. Our data indicate that Ir-Nase is located within the same chromosomal segment of the H-2 complex as is Ir-IgG

    Antiretroviral activity of the aminothiol WR1065 against Human Immunodeficiency virus (HIV-1) in vitro and Simian Immunodeficiency virus (SIV) ex vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 also inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. In this study we expanded the original observations to define the dose-response curve for that inhibition, and address the question of additive effects for the combination of WR1065 plus Zidovudine (AZT). Here we also explored the effect of WR1065 on SIV by examining TCBs taken from macaques with well-established infections several months with SIV.</p> <p>Results</p> <p>TCBs from healthy human donors were infected for 2 hr with HIV-1, and viral replication (p24) was measured after 72 hr of incubation with or without WR1065, AZT, or both drugs. HIV-1 replication, in HIV-1-infected human TCBs, was inhibited by 50% at 13 μM WR1065, a dose at which 80% of the cells were viable. Cell cycle parameters were the same or equivalent at 0, 9.5 and 18.7 μM WR1065, showing no drug-related toxicity. Combination of AZT with WR1065 showed that AZT retained antiretroviral potency in the presence of WR1065. Cultured CD8<sup>+ </sup>T cell-depleted PHA-stimulated TCBs from <it>Macaca mulatta </it>monkeys chronically infected with SIV were incubated 17 days with WR1065, and viral replication (p27) and cell viability were determined. Complete inhibition (100%) of SIV replication (p27) was observed when TCBs from 3 monkeys were incubated for 17 days with 18.7 μM WR1065. A lower dose, 9.5 μM WR1065, completely inhibited SIV replication in 2 of the 3 monkeys, but cells from the third macaque, with the highest viral titer, only responded at the high WR1065 dose.</p> <p>Conclusion</p> <p>The study demonstrates that WR1065 and the parent drug amifostine, the FDA-approved drug Ethyol, have antiretroviral activity. WR1065 was active against both an acute infection of HIV-1 and a chronic infection of SIV. The data suggest that the non-toxic drug amifostine may be a useful antiretroviral agent given either alone or in combination with other drugs as adjuvant therapy.</p

    WR1065 mitigates AZT-ddI-induced mutagenesis and inhibits viral replication

    Get PDF
    The success of nucleoside reverse transcriptase inhibitors (NRTIs) in treating HIV-1 infection and reducing mother-to-child transmission of the virus during pregnancy is accompanied by evidence that NRTIs cause long-term health risks for cancer and mitochondrial disease. Thus, agents that mitigate toxicities of the current combination drug therapies are needed. Previous work had shown that the NRTI-drug pair zidovudine (AZT)–didanosine (ddI) was highly cytotoxic and mutagenic; thus, we conducted preliminary studies to investigate the ability of the active moiety of amifostine, WR1065, to protect against the deleterious effects of this NRTI-drug pair. In TK6 cells exposed to 100 μM AZT-ddI (equimolar) for 3 days with or without 150 μM WR1065, WR1065 enhanced long-term cell survival and significantly reduced AZT-ddI-induced mutations. Follow-up studies were conducted to determine if coexposure to AZT and WR1065 abrogated the antiretroviral efficacy of AZT. In human T-cell blasts infected with HIV-1 in culture, inhibition of p24 protein production was observed in cells treated with 10 μM AZT in the absence or presence of 5–1,000 μM WR1065. Surprisingly, WR1065 alone exhibited dose-related inhibition of HIV-1 p24 protein production. WR1065 also had antiviral efficacy against three species of adenovirus and influenza A and B. Intracellular levels of unbound WR1065 were measured following in vitro/in vivo drug exposure. These pilot study results indicate that WR1065, at low intracellular levels, has cytoprotective and antimutagenic activities against the most mutagenic pair of NRTIs and has broad spectrum anti-viral effects. These findings suggest that the activities have a possible common mode of action that merits further investigation

    HIV-Induced Type I Interferon and Tryptophan Catabolism Drive T Cell Dysfunction Despite Phenotypic Activation

    Get PDF
    Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-α/β, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-α/β receptor and mimicked by recombinant IFN-α/β. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection

    word~river literary review (2011)

    Full text link
    wordriver is a literary journal dedicated to the poetry, short fiction and creative nonfiction of adjuncts and part-time instructors teaching in our universities, colleges, and community colleges. Our premier issue was published in Spring 2009. We are always looking for work that demonstrates the creativity and craft of adjunct/part-time instructors in English and other disciplines. We reserve first publication rights and onetime anthology publication rights for all work published. We define adjunct instructors as anyone teaching part-time or full-time under a semester or yearly contract, nationwide and in any discipline. Graduate students teaching under part-time contracts during the summer or who have used up their teaching assistant time and are teaching with adjunct contracts for the remainder of their graduate program also are eligible.https://digitalscholarship.unlv.edu/word_river/1001/thumbnail.jp
    • …
    corecore