86 research outputs found

    Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    Get PDF
    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein

    cis-Urocanic Acid Attenuates Acute Dextran Sodium Sulphate-Induced Intestinal Inflammation

    Get PDF
    On exposure to sunlight, urocanic acid (UCA) in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS) for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10−/− mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS) ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 µg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10−/− mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory disorders

    Effect of sucralfate on components of mucosal barrier produced by cultured canine epithelial cells in vitro

    Full text link
    The mucous gel maintains a neutral microclimate at the epithelial cell surface, which may play a role in both the prevention of gastroduodenal injury and the provision of an environment essential for epithelial restitution and regeneration after injury. Enhancement of the components of the mucous barrier by sucralfate may explain its therapeutic efficacy for upper gastrointestinal tract protection, repai, and healing. We studied the effect of sucralfate and its major soluble component, sucrose octasulfate (SOS), on the synthesis and release of gastric mucin and surface active phospholipid, utilizing an isolated canine gastric mucous cells in culture. We correlated these results with the effect of the agents on mucin synthesis and secretion utilizing explants of canine fundus in vitro . Sucralfate and SOS significantly stimulated phospholipid secretion by isolated canine mucous cells in culture (123% and 112% of control, respectively.) Indomethacin pretreatment siginificantly inhibited the effect of sucralfate, but not SOS, on the stimulation of phospholipid release. Administration of either sucralfate or SOS to the isolated canine mucous cells had no effect upon mucin synthesis or secretion using a sensitive immunoassay. Sucralfate and SOS did not stimulate mucin release in the canine explants; sucralfate significantly stimulated the synthesis of mucin, but only to 108% of that observed in untreated explants. No increase in PGE 2 release was observed after sucralfate or SOS exposure to the isolated canine mucous cells. Our results suggest sucralfate affects the mucus barrier largely in a qualitative manner. No increase in mucin secretion or major effect on synthesis was notd, although a significant increase in surface active phospholipid release was observed. The lack of dose dependency of this effect, along with the results of the PGE 2 assay, suggests the drug may act through a non-receptor-mediated mechanism to perturb the cell membrane and release surface active phospholipid. The enhancement of phospholipid release by sucralfate to augment the barrier function of gastric mucus may, in concert with other effects of the drug, strrengthen mucosal barrier function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44415/1/10620_2005_Article_BF01308079.pd

    Early Exposure of Infants to GI Nematodes Induces Th2 Dominant Immune Responses Which Are Unaffected by Periodic Anthelminthic Treatment

    Get PDF
    We have previously shown a reduction in anaemia and wasting malnutrition in infants <3 years old in Pemba Island, Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI) nematodes Ascaris lumbricoides, hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected, and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-γ and IL-10) induced by the worms were evaluated in 666 infants aged 6–24 months using the Whole Blood Assay. Ascaris and hookworm antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by modification of cytokine responses but may be related to eosinophil function

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

    Get PDF
    Background The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. Results Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. Conclusions These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19
    corecore