328 research outputs found

    SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm.

    Get PDF
    The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, atmosphere environment and energy balance. One of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and corresponding atmospheric correction procedure normally use the full radiative transfer calculation or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD and corresponding atmospheric correction procedure. This paper is the first part of the algorithm, which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue (DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations (i.e., all that were available) have been tested and validated. The retrieval results agree quite well with MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational running algorithm for creating aerosol product from the Chinese GF4 satellite.N/

    Quality assurance plan for China collection 2.0 aerosol datasets

    Get PDF
    The inversion of atmospheric aerosol optical depth (AOD) using satellite data has always been a challenge topic in atmospheric research. In order to solve the aerosol retrieval problem over bright land surface, the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm has been developed based on the synergetic using of the MODIS data of TERRA and AQUA satellites [1, 2]. In this paper we describe, in details, the quality assessment or quality assurance (QA) plan for AOD products derived using the SRAP algorithm. The pixel-based QA plan is to give a QA flag to every step of the process in the AOD retrieval. The quality assessment procedures include three common aspects: 1) input data resource flags, 2) retrieval processing flags, 3) product quality flags [3]. Besides, all AOD products are assigned a QA ‘confidence’ flag (QAC) that represents the aggregation of all the individual QA flags. This QAC value ranges from 3 to 0, with QA = 3 indicating the retrievals of highest confidence and QA = 2/QA = 1 progressively lower confidence [4], and 0 means ‘bad’ quality. These QA (QAC) flags indicate how the particular retrieval process should be considered. It is also used as a filter for expected quantitative value of the retrieval, or to provide weighting for aggregating/averaging computations [5]. All of the QA flags are stored as a “bit flag” scientific dataset array in which QA flags of each step are stored in particular bit positions

    Velocity–vorticity correlation structure in turbulent channel flow

    Get PDF

    An atmospheric correction algorithm for FY3/MERSI data over land in China

    Get PDF
    Feng-Yun (FY-3) is the second generation of the Chinese Polar Orbiting Meteorological Satellites with global, three-dimensional, quantitative, and multispectral capabilities. Medium Resolution Spectral Imager (MERSI) has 20 channels onboard the FY-3A and FY-3B satellites, including five channels (four VIS and one thermal IR) with a spatial resolution of 250m. The top of the atmosphere signal are necessary to be radiometrically calibrated and corrected for atmospheric effects based on surface reflectance, especially in land surface remote sensing and applications. This paper presents an atmospheric correction algorithm for FY3/MERSI data over land in China, taking into account the directional properties of the observed surface by a kernel-based Bi-directional Reflectance Distribution Function (BRDF) model. The comparison with MODGA and ASD reflectance showed that there is a good agreement. Therefore, FY3/MERSI can serve a reliable and new data source for quantifying global environment change

    Anomalous magnetohydrodynamics with temperature-dependent electric conductivity and application to the global polarization

    Full text link
    We have derived the solutions of the relativistic anomalous magnetohydrodynamics with longitudinal Bjorken boost invariance and transverse electromagnetic fields in the presence of temperature or energy density dependent electric conductivity. We consider the equations of states in a high temperature limit or in a high chiral chemical potential limit. We obtain both perturbative analytic solutions up to the order of \hbar and numerical solutions in our configurations of initial electromagnetic fields and Bjorken flow velocity. Our results show that the temperature or energy density dependent electric conductivity plays an important role to the decaying of the energy density and electromagnetic fields. We also implement our results to the splitting of global polarization for \Lambda and \bar{\Lambda} hyperons induced by the magnetic fields. Our results for the splitting of global polarization disagree with the experimental data in low energy collisions, which implies that the contribution from gradient of chemical potential may dominate in the low energy collisions

    Post calibration of channel 1 of NOAA-14 AVHRR: Implications on aerosol optical depth retrieval

    Get PDF
    In order to produce long-term aerosol optical depth (AOD) dataset over land from the Advanced Very High Resolution Radiometer (AVHRR), AVHRR data quality in terms of radiometric calibration must be maintained. A vicarious calibration method have been developed by incorporating well calibrated Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) radiance data over several pseudo-invariant targets to inter-calibrate the channel 1 of AVHRR based on Bidirectional Reflectance Distribution Functions (BRDFs) and spectral band adjustment factor (SBAF) models for different targets. Comparison of our calibration coefficients with those of Pathfinder Atmospheres Extended (PATMOS-x) indicate the calibration accuracy to be within 2.5%. The operational L1B and recalibrated AVHRR radiance are applied to derive AOD maps over East America (dark surface) and West Africa (bright surface) using the land aerosol and bidirectional reflectance inversion by times series technique (LABITS) algorithm. Preliminary comparisons show that significant difference in the retrieved AOD from the two different calibration is expected, while the spatial distribution of AOD difference is complicated due to different surface brightness and deficiencies of numeric solutions

    IMJENSE: Scan-specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

    Full text link
    Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5×\mathbf{\times} and 6×\mathbf{\times} accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI

    DNA repair and synthetic lethality

    Get PDF
    Tumors often have DNA repair defects, suggesting additional inhibition of other DNA repair pathways in tumors may lead to synthetic lethality. Accumulating data demonstrate that DNA repair-defective tumors, in particular homologous recombination (HR), are highly sensitive to DNA-damaging agents. Thus, HR-defective tumors exhibit potential vulnerability to the synthetic lethality approach, which may lead to new therapeutic strategies. It is well known that poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) inhibitors show the synthetically lethal effect in tumors defective in BRCA1 or BRCA2 genes encoded proteins that are required for efficient HR. In this review, we summarize the strategies of targeting DNA repair pathways and other DNA metabolic functions to cause synthetic lethality in HR-defective tumor cells

    Novel mesoporous TiO2(B) whisker-supported sulfated solid superacid with unique acid characteristics and catalytic performances

    Get PDF
    Mesoporous TiO2(B) whisker was firstly applied as a support for synthesizing the novel sulfated solid superacid (SO42−/TiO2(B)). According to NH3-TPD, TG and Py-IR characterization results, it was found that the similar amount of sulfate group on TiO2(B) and anatase showed significantly different acid characteristics and catalytic performances. The total acid amount of SO42−/TiO2(B) was about 1.8 times as anatase-supported sulfated solid superacid (SO42−/Anatase). Simultaneously, the SO42−/TiO2(B) possessed higher percentage of Brønsted acid and more weak-medium acid strength than SO42−/Anatase. These acidic properties endowed SO42−/TiO2(B) with the increased esterification reaction rate and decreased alkylation byproduct selectivity compared with that of SO42−/Anatase. Structure-performance analysis exhibited that there were more bridged bidentate sulfate groups coordinated to the TiO2(B) in SO42−/TiO2(B), which could induce more Ti cations than that of the chelating one. This was the key factor to be responsible for the unique acid characteristics of SO42−/TiO2(B). The present work provides a novel solid superacid and might open a strategy to mediate the acid characteristic for sulfated solid superacid
    corecore