205 research outputs found

    On universality of local edge regime for the deformed Gaussian Unitary Ensemble

    Full text link
    We consider the deformed Gaussian ensemble Hn=Hn(0)+MnH_n=H_n^{(0)}+M_n in which Hn(0)H_n^{(0)} is a hermitian matrix (possibly random) and MnM_n is the Gaussian unitary random matrix (GUE) independent of Hn(0)H_n^{(0)}. Assuming that the Normalized Counting Measure of Hn(0)H_n^{(0)} converges weakly (in probability if random) to a non-random measure N(0)N^{(0)} with a bounded support and assuming some conditions on the convergence rate, we prove universality of the local eigenvalue statistics near the edge of the limiting spectrum of HnH_n.Comment: 25 pages, 2 figure

    Filter-based DIRECT method for constrained global optimization

    Get PDF
    This paper presents a DIRECT-type method that uses a filter methodology to assure convergence to a feasible and optimal solution of nonsmooth and nonconvex constrained global optimization problems. The filter methodology aims to give priority to the selection of hyperrectangles with feasible center points, followed by those with infeasible and non-dominated center points and finally by those that have infeasible and dominated center points. The convergence properties of the algorithm are analyzed. Preliminary numerical experiments show that the proposed filter-based DIRECT algorithm gives competitive results when compared with other DIRECT-type methods.The authors would like to thank two anonymous referees and the Associate Editor for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundac¸ao para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice

    Get PDF
    Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin(-/-) mice likely arise as a consequence of nutritional stress.We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin

    Evolution of Highly Polymorphic T Cell Populations in Siblings with the Wiskott-Aldrich Syndrome

    Get PDF
    Population level evolutionary processes can occur within a single organism when the germ line contains a mutation that confers a cost at the level of the cell. Here we describe how multiple compensatory mutations arose through a within-individual evolutionary process in two brothers with the immune deficiency Wiskott-Aldrich Syndrome (WAS). As a result, both brothers have T lymphocyte populations that are highly polymorphic at the locus of the germ line defect, and no single allele achieves fixation. WASP, the gene product affected in this disease, is specific to white blood cells where it is responsible for regulating actin cytoskeleton dynamics in a wide range of cellular responses. The brothers inherited a rare allele predicted to result in truncated WASP lacking the carboxy-terminal VCA domains, the region that directly catalyzes actin filament generation. Although the brothers' T cell populations are highly polymorphic, all share a corrective effect relative to the inherited allele in that they restore the VCA domain. This indicates massive selection against the truncated germ line allele. No single somatic allele becomes fixed in the circulating T cell population of either brother, indicating that a regulated step in maturation of the affected cell lineage is severely compromised by the germ line allele. Based on the finding of multiple somatic mutations, the known maturation pathway for T-lineage cells and the known defects of T cells and precursor thymocytes in mice with truncated WASP, we hypothesize that the presence of truncated WASP (WASPΔVCA) confers an extreme disadvantage in early developing thymocytes, above and beyond the known cost of absence of full-length WASP, and that the disadvantage likely occurs through dominant negative competition of WASPΔVCA with N-WASP, a protein that otherwise partially compensates for WASP absence in developing thymocytes

    The LatMix summer campaign : submesoscale stirring in the upper ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).2016-02-0

    Gene Targeting Implicates Cdc42 GTPase in GPVI and Non-GPVI Mediated Platelet Filopodia Formation, Secretion and Aggregation

    Get PDF
    Background: Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation. Methodology/Principal Findings: We utilized the Mx-cre;Cdc42 lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42 +/+ mice. Platelets isolated from Cdc42 2/2, as compared to Cdc42 +/+, mice exhibited (a) diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b) inhibition of filopodia formation on immobilized CRP or fibrinogen, (c) inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d) inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e) minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42 2/2 mice compared with Cdc42 +/+ mice. Conclusion/Significance: Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion an

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    Management of Work and Procedure for the Laboratory Diagnostics of Infectious Diseases during the Winter XXII Olympics and XI Paralympics, 2014

    Get PDF
    Analyzed is the management system for laboratory diagnostics of infectious diseases during the XXII Olympics and XI Paralympics, 2014 in Sochi. Reviewed is piece of work, executed in the pre-Olympic period as regards provision of laboratory facilities deployed for clinical material investigation, development of normative and regulatory documentation which considers peculiarities of the situation, identification of diagnostic capacities of the laboratories, and forecasting of the probable volume of laboratory studies by reference to various groups of infections. Put forward is the procedure for arrangement of work at the different stages of laboratory diagnostics, cooperation and response in case of emergency situation in the sphere of sanitary-epidemiological welfare of the population. Discussed is the role of geo-information system and current means of monitoring over epidemiological situation in the participating states and in the region of the Olympics in laboratory support organization

    A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk

    Full text link
    Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Geneenvironment interactions (G x E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G x E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G x E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G x E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant GxBMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer

    Columnar Liquid Crystals in Cylindrical Nanoconfinement

    Get PDF
    Axial orientation of discotic columnar liquid crystals in nanopores of inorganic templates, with the columns parallel to the axis of the nanochannels, is considered desirable for applications such as production of molecular wires. Here, we evaluate experimentally the role of the rigidity of the LC columns in achieving such orientation in nanopores where the planar anchoring (i.e., columns parallel to wall surface) is enforced. We studied the columnar phase of several discotic compounds with increasing column rigidity in the following order: dendronized carbazole, hexakis(hexyloxy)triphenylene (HAT6), a 1:1 HAT6-trinitrofluorenone (TNF) complex, and a helicene derivative. Using 2-D X-ray diffraction, AFM, grazing incidence diffraction, and polarized microscopy, we observed that the orientation of the columns changes from circular concentric to axial with increasing column rigidity. Additionally, when the rigidity is borderline, increasing pore diameter can change the configuration from axial back to circular. We derive expressions for distortion free energy that suggest that the orientation is determined by the competition between, on the one hand, the distortion energy of the 2-d lattice and the mismatch of its crystallographic facets with the curved pore wall in the axial orientation and, on the other hand, the bend energy of the columns in the circular configuration. Furthermore, the highly detailed AFM images of the core of the disclinations of strength +1 and +1/2 in the center of the pore reveal that the columns spiral down to the very center of the disclination and that there is no amorphous or misaligned region at the core, as suggested previously
    corecore