1,479 research outputs found

    Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

    Full text link
    Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to ''electron-only'' reconnection with very large quasi-steady reconnection rates. The transition to more traditional ''ion-coupled'' reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs

    Get PDF
    We advance all optical spin noise spectroscopy (SNS) in semiconductors to detection bandwidths of several hundred gigahertz by employing an ingenious scheme of pulse trains from ultrafast laser oscillators as an optical probe. The ultrafast SNS technique avoids the need for optical pumping and enables nearly perturbation free measurements of extremely short spin dephasing times. We employ the technique to highly n-doped bulk GaAs where magnetic field dependent measurements show unexpected large g-factor fluctuations. Calculations suggest that such large g-factor fluctuations do not necessarily result from extrinsic sample variations but are intrinsically present in every doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure

    Validity of wrist-worn consumer products to measure heart rate and energy expenditure

    Get PDF
    Introduction: The ability to monitor physical activity throughout the day and during various activities continues to improve with the development of wrist-worn monitors. However, the accuracy of wrist-worn monitors to measure both heart rate and energy expenditure during physical activity is still unclear. The purpose of this study was to determine the accuracy of several popular wrist-worn monitors at measuring heart rate and energy expenditure. Methods: Participants wore the TomTom Cardio, Microsoft Band and Fitbit Surge on randomly assigned locations on each wrist. The maximum number of monitors per wrist was two. The criteria used for heart rate and energy expenditure were a three-lead electrocardiogram and indirect calorimetry using a metabolic cart. Participants exercised on a treadmill at 3.2, 4.8, 6.4, 8 and 9.7 km/h for 3 minutes at each speed, with no rest between speeds. Heart rate and energy expenditure were manually recorded every minute throughout the protocol. Results: Mean absolute percentage error for heart rate varied from 2.17 to 8.06% for the Fitbit Surge, from 1.01 to 7.49% for the TomTom Cardio and from 1.31 to 7.37% for the Microsoft Band. The mean absolute percentage error for energy expenditure varied from 25.4 to 61.8% for the Fitbit Surge, from 0.4 to 26.6% for the TomTom Cardio and from 1.8 to 9.4% for the Microsoft Band. Conclusion: Data from these devices may be useful in obtaining an estimate of heart rate for everyday activities and general exercise, but energy expenditure from these devices may be significantly over- or underestimated

    The COVID-19 Impact on Health Administration Education: Understanding Student Perspectives on the Transition from In-Person to Remote Course Instruction

    Get PDF
    COVID-19 has infected millions of Americans. To combat the spread of the virus, state and local officials instituted social distancing guidelines that forced schools to shutter campuses and transition from in-person to remote learning. In this study, we examined health administration (HA) student perspectives on the transition from in-person to remote learning. We sought to understand how schools attempted to manage student concerns, how adaptations to remote learning were implemented, and what influences the transition had on student stress and anxiety. We used a mixed-methods study design that included (1) a survey of undergraduate and graduate students from six geographically diverse HA programs, and (2) a focus group with 6–10 students from each program. Our survey response rate was 52% (n =215). We found that students experienced five phases following the transition: grief, loss of engagement, fatigue, coping, and resilience. Focus groups also revealed stress and anxiety, as well as communication from leaders, as important themes. We present integrated survey and focus group findings, and supplement with exemplary quotes where applicable. We conclude by discussing a number of insights provided by HA students that may help guide program leadership and HA faculty who are teaching future remote courses

    Full-Duplex Digital Communication on a Single Laser Beam

    Get PDF
    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end

    Validity of Wrist-worn Physical Activity Monitors to Measure Heart Rate

    Get PDF
    Numerous physical activity monitors exist and are used to track and improve fitness levels. Due to the increasing popularity of these devices, newer products have been developed that measure heart rate (HR) at the wrist. Little is known about how accurate these devices are at measuring HR at the wrist and how they compare to each other. PURPOSE: To determine how accurately HR was measured by three different wrist-worn physical activity monitors. METHODS: Recreationally active men (n=9) and women (n=3) participated in this study. The average age and weight of participants was 22 ± 3 years and 73.9 ± 12 kg. TomTom Cardio (TT), Fitbit Surge (FB) and Microsoft Band (MB) physical activity monitors were used. The TT, FB, and MB were randomly assigned to the right or left wrist for each participant. The testing procedure included speeds of 2, 3, 4, 5, and 6 mph with each speed lasting three minutes. HR was measured by electrocardiography (ECG) using standard limb lead II and by the three different physical activity monitors. HR was recorded from each device every minute throughout the duration of the procedure. Pearson product moment correlations and bias between electrocardiography (ECG) and physical activity monitors with 95% limits of agreement (Bland-Altman analysis) were calculated. Repeated measures ANOVA [Speed x Device] were also calculated. Statistical significance was set at pRESULTS: At 2 mph and 3 mph, only TT HR was significantly correlated with ECG heart rate (r=0.693, p=0.012 and r=0.592, p=0.043). At 4 mph and 6 mph TT was significantly correlated with ECG (r=0.911, pCONCLUSION: With increasing speeds, physical activity monitors more accurately measure HR but individuals should be aware that these devices may overestimate HR during slower walking speeds

    Vector Particle Interactions In the Quasipotential Approach

    Full text link
    The composite system, formed by two S=1S=1 particles, is considered. The field operators of constituents are transformed on the (1,0)⊕(0,1)(1,0)\oplus (0,1) representation of the Lorentz group. The problem of interaction of S=1S=1 particle with the electromagnetic field is also discussed.Comment: LateX file, 7pp., Preprint IFUNAM FT-93-01

    Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling

    Get PDF
    In light of the 2009 influenza pandemic and potential future pandemics, Maria Van Kerkhove and colleagues anticipate six public health challenges and the data needed to support sound public health decision making.The authors acknowledge support from the Bill & Melinda Gates Foundation (MDVK, CF, NMF); Royal Society (CF); Medical Research Council (MDVK, CF, PJW, NMF); EU FP7 programme (NMF); UK Health Protection Agency (PJW); US National Institutes of Health Models of Infectious Disease Agent Study program through cooperative agreement 1U54GM088588 (ML); NIH Director's Pioneer Award, DP1-OD000490-01 (DS); EU FP7 grant EMPERIE 223498 (DS); the Wellcome Trust (DS); 3R01TW008246-01S1 from Fogerty International Center and RAPIDD program from Fogerty International Center with the Science & Technology Directorate, Department of Homeland Security (SR); and the Institut de Veille Sanitaire Sanitaire funded by the French Ministry of Health (J-CD). The funders played no role in the decision to submit the article or in its preparation
    • …
    corecore