12 research outputs found

    Insulin Resistance Does Not Impair Mechanical Overload-Stimulated Glucose Uptake, but Does Alter the Metabolic Fate of Glucose in Mouse Muscle

    Get PDF
    Skeletal muscle glucose uptake and glucose metabolism are impaired in insulin resistance. Mechanical overload stimulates glucose uptake into insulin-resistant muscle; yet the mechanisms underlying this beneficial effect remain poorly understood. This study examined whether a differential partitioning of glucose metabolism is part of the mechanosensitive mechanism underlying overload-stimulated glucose uptake in insulin-resistant muscle. Mice were fed a high-fat diet to induce insulin resistance. Plantaris muscle overload was induced by unilateral synergist ablation. After 5 days, muscles were excised for the following measurements: (1) [3H]-2-deoxyglucose uptake; (2) glycogen; 3) [5-3H]-glucose flux through glycolysis; (4) lactate secretion; (5) metabolites; and (6) immunoblots. Overload increased glucose uptake ~80% in both insulin-sensitive and insulin-resistant muscles. Overload increased glycogen content ~20% and this was enhanced to ~40% in the insulin-resistant muscle. Overload did not alter glycolytic flux, but did increase muscle lactate secretion 40–50%. In both insulin-sensitive and insulin-resistant muscles, overload increased 6-phosphogluconate levels ~150% and decreased NADP:NADPH ~60%, indicating pentose phosphate pathway activation. Overload increased protein O-GlcNAcylation ~45% and this was enhanced to ~55% in the insulin-resistant muscle, indicating hexosamine pathway activation. In conclusion, insulin resistance does not impair mechanical overload-stimulated glucose uptake but does alter the metabolic fate of glucose in muscle

    Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training

    Get PDF
    Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism

    Insulin Resistance Is Not Sustained Following Denervation in Glycolytic Skeletal Muscle

    Get PDF
    Denervation rapidly induces insulin resistance (i.e., impairments in insulin-stimulated glucose uptake and signaling proteins) in skeletal muscle. Surprisingly, whether this metabolic derangement is long-lasting is presently not clear. The main goal of this study was to determine if insulin resistance is sustained in both oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles following long-term (28 days) denervation. Mouse hindlimb muscles were denervated via unilateral sciatic nerve resection. Both soleus and EDL muscles atrophied ~40%. Strikingly, while denervation impaired submaximal insulin-stimulated [3H]-2-deoxyglucose uptake ~30% in the soleus, it enhanced submaximal (~120%) and maximal (~160%) insulin-stimulated glucose uptake in the EDL. To assess possible mechanism(s), immunoblots were performed. Denervation did not consistently alter insulin signaling (e.g., p-Akt (Thr308):Akt; p-TBC1D1 [phospho-Akt substrate (PAS)]:TBC1D1; or p-TBC1D4 (PAS):TBC1D4) in either muscle. However, denervation decreased glucose transporter 4 (GLUT4) levels ~65% in the soleus but increased them ~90% in the EDL. To assess the contribution of GLUT4 to the enhanced EDL muscle glucose uptake, muscle-specific GLUT4 knockout mice were examined. Loss of GLUT4 prevented the denervation-induced increase in insulin-stimulated glucose uptake. In conclusion, the denervation results sustained insulin resistance in the soleus but enhanced insulin sensitivity in the EDL due to increased GLUT4 protein levels

    Genetically Increasing Flux Through b-Oxidation in Skeletal Muscle Increases Mitochondrial Reductive Stress and Glucose Intolerance

    Get PDF
    Elevated mitochondrial hydrogen peroxide (H(2)O(2)) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨ(m)), and H(2)O(2) production rate (JH(2)O(2)) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased β-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH(2)O(2) production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis. NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate β-oxidation will be protective. The current study provides evidence that genetically increasing flux through β-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation

    Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training

    No full text
    Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism

    Acute vitamin C improves cardiac function, not exercise capacity, in adults with type 2 diabetes

    No full text
    Abstract Background People with type 2 diabetes (T2D) have impaired exercise capacity, even in the absence of complications, which is predictive of their increased cardiovascular mortality. Cardiovascular dysfunction is one potential cause of this exercise defect. Acute infusion of vitamin C has been separately shown to improve diastolic and endothelial function in prior studies. We hypothesized that acute vitamin C infusion would improve exercise capacity and that these improvements would be associated with improved cardiovascular function. Methods Adults with T2D (n = 31, 7 female, 24 male, body mass index (BMI): 31.5 ± 0.8 kg/m2) and BMI-similar healthy adults (n = 21, 11 female, 10 male, BMI: 30.4 ± 0.7 kg/m2) completed two randomly ordered visits: IV infusion of vitamin C (7.5 g) and a volume-matched saline infusion. During each visit peak oxygen uptake (VO2peak), brachial artery flow mediated dilation (FMD), reactive hyperemia (RH; plethysmography), and cardiac echocardiography were measured. General linear mixed models were utilized to assess the differences in all study variables. Results Acute vitamin C infusion improved diastolic function, assessed by lateral and septal E:E’ (P < 0.01), but did not change RH (P = 0.92), or VO2peak (P = 0.33) in any participants. Conclusion Acute vitamin C infusion improved diastolic function but did not change FMD, forearm reactive hyperemia, or peak exercise capacity. Future studies should further clarify the role of endothelial function as well as other possible physiological causes of exercise impairment in order to provide potential therapeutic targets. Trial registration NCT00786019. Prospectively registered May 200
    corecore