164 research outputs found

    Technical and institutional issues in participatory plant breeding-done from a perspective of farmer plant breeding

    No full text

    Developing Future Experts in Agriculture for Development : Some thoughts on the challenges of capacitydevelopment to address inter-disciplinary problems

    Get PDF
    departmental bulletin pape

    Seed systems smallholder farmers use

    Get PDF
    Seed can be an important entry point for promoting productivity, nutrition and resilience among smallholder farmers. While investments have primarily focused on strengthening the formal sector, this article documents the degree to which the informal sector remains the core for seed acquisition, especially in Africa. Conclusions drawn from a uniquely comprehensive data set, 9660 observations across six countries and covering 40 crops, show that farmers access 90.2 % of their seed from informal systems with 50.9 % of that deriving from local markets. Further, 55 % of seed is paid for by cash, indicating that smallholders are already making important investments in this arena. Targeted interventions are proposed for rendering formal and informal seed sector more smallholder-responsive and for scaling up positive impacts

    CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Get PDF
    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shock's interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa

    Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    Get PDF
    Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules

    Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    Get PDF
    Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules

    Inequality, envy and personality in public goods: an experimental study

    Get PDF
    This paper examines the impact of inequality on contributions to public goods focusing on the mediating role of personality using an inequality aversion model as a theoretical framework and experimental data from rural Rwanda. As predicted by the theoretical model, low-income players contribute less. We examine the predictive power of two personality approaches. The first is a person-centred approach using latent class analysis (LCA) to identify types of individuals with specific constellation of Big Five dimensions. The second focuses on individual dimensions of Big Five. While the person-centred approach has no explanatory power, one dimension of Big Five, Extraversion, is a significant and robust determinant; low-income players with higher Extraversion significantly reduce their contribution. Further exploratory analyses focusing on two dimensions of Big Five reveal that it does not provide any additional explanation compared to when each dimension is considered

    Complex and diverse rupture processes of the 2018 Mw 8.2 and Mw 7.9 Tonga-Fiji deep earthquakes

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(5), (2019):2434-2448, doi:10.1029/2018GL080997.Deep earthquakes exhibit strong variabilities in their rupture and aftershock characteristics, yet their physical failure mechanisms remain elusive. The 2018 Mw 8.2 and Mw 7.9 Tonga‐Fiji deep earthquakes, the two largest ever recorded in this subduction zone, occurred within days of each other. We investigate these events by performing waveform analysis, teleseismic P wave backprojection, and aftershock relocation. Our results show that the Mw 8.2 earthquake ruptured fast (4.1 km/s) and excited frequency‐dependent seismic radiation, whereas the Mw 7.9 earthquake ruptured slowly (2.5 km/s). Both events lasted ∼35 s. The Mw 8.2 earthquake initiated in the highly seismogenic, cold core of the slab and likely ruptured into the surrounding warmer materials, whereas the Mw 7.9 earthquake likely ruptured through a dissipative process in a previously aseismic region. The contrasts in earthquake kinematics and aftershock productivity argue for a combination of at least two primary mechanisms enabling rupture in the region.We thank the Editor Gavin Hayes and two anonymous reviewers for their helpful comments that improved the quality of the manuscript. The seismic data were provided by Data Management Center (DMC) of the Incorporated Research Institutions for Seismology (IRIS). The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR‐1261681. W. F. acknowledges supports from the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Postdoctoral Scholarship. S. S. W. and D. T. are supported by the MSU Geological Sciences Endowment.2019-08-2
    corecore