36 research outputs found

    Colloidal ionic complexes on periodic substrates: ground state configurations and pattern switching

    Full text link
    We theoretically and numerically studied ordering of "colloidal ionic clusters" on periodic substrate potentials as those generated by optical trapping. Each cluster consists of three charged spherical colloids: two negatively and one positively charged. The substrate is a square or rectangular array of traps, each confining one such cluster. By varying the lattice constant from large to small, the observed clusters are first rod-like and form ferro- and antiferro-like phases, then they bend into a banana-like shape and finally condense into a percolated structure. Remarkably, in a broad parameter range between single-cluster and percolated structures, we have found stable supercomplexes composed of six colloids forming grape-like or rocket-like structures. We investigated the possibility of macroscopic pattern switching by applying external electrical fields.Comment: 14 pages, 13 figure

    Insulated fixation system of plasma facing components to the divertor cassette in Eurofusion-DEMO

    Get PDF
    The design activities of an insulated Plasma Facing Components-Cassette Body (PFCs-CB) support has been carried out under the pre-conceptual design phase for Eurofusion-DEMO Work Package DIV-1 \u201cDivertor Cassette Design and Integration\u201d - Eurofusion Power Plant Physics & Technology (PPPT) program. The Eurofusion-DEMO divertor is a key in-vessel component with PFCs which directly interact with the plasma scrape-off layer. The PFCs have to cope with high heat loads, neutron irradiation and electromagnetic loads. The mechanical integrity of the PFCs and water cooling pipes can be jeopardized by high heat loads and by electromagnetic loads generated in a disruption event. In European-DEMO the possibility to estimate the heat load by measuring the relative thermocurrents is under investigation. In order to allow thermocurrents measurements, a divertor design option provides that PFCs are electrically insulated from CB. In this work authors aim to analyze the opportunity that the PFC-CB fixing system incorporates an electrical insulation system, thus acquiring also an important diagnostic role in the measurement of the thermocurrents and in the management of the current flows. The possible use of ceramic material (e.g. alumina) as the insulating layer between the support components is investigated

    Microscopic modelling of doped manganites

    Full text link
    Colossal magneto-resistance manganites are characterised by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting to conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low energy physics. Focussing on short range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on Orbital Physic

    Assessment of the Linkages and Leakages in a Cloud-Based Computing Collaboration among Construction Stakeholders

    Get PDF
    The uniqueness of the construction industry can be understood in the large volumes of information in terms of paper works, processes, and communication disseminated daily. The voluminous information requires close coordination which cloud based systems offer. The aim of this research is to assess the linkages and leakages in a cloud-based computing collaboration among construction stakeholders. A purposive sampling technique was used in selecting the participants of the study. A questionnaire based instrument was distributed to eighty (80) construction stakeholder in Lagos State, Nigeria. The data collected was analyzed using SPSS v.21. Statistical tools such as frequencies, stacked bars, mean scores, factor analysis, and analysis of variance (ANOVA) were used in the study. The result of the study revealed that construction stakeholders rarely utilize cloud-based technologies for their construction processes. Construction professionals that access cloud based technologies, do so with their smart mobile phones, laptops, and tablet. The study classified the leakages that exist in the use of cloud-based technologies as securitybased factors, cloud-based infrastructure factors, and cloud-based benefits deficiency based factors. In conclusion, the study revealed that the linkages in the use of cloudbased technologies include knowledge sharing, remote access of back-office activities and engendering collaboration among construction stakeholders. It was recommended that construction stakeholders should leverage on the benefits cloud-based technologies has to offer in today’s competitive economy. Construction stakeholdersshould be adequately informed on the available cloud-based computing technologies and the additions it can bring into the construction process. Cloud computing technology vendors should improve on the security and privacy features of the platform for adequate protection of building data

    Numerical study of the EeE\otimes e Jahn-Teller polaron and bipolaron

    Full text link
    The properties of the polaron and bipolaron are explored in the 1D Jahn-Teller model with dynamical quantum phonons. The ground-state properties of the polaron and bipolaron are computed using a recently developed variational method. Dynamical properties of the ground state of a polaron are investigated by calculating the optical conductivity σ(ω)\sigma(\omega). Our numerical results suggest that the Jahn-Teller and Holstein polarons are similar. However, in the strong-coupling regime qualitative differences in σ(ω)\sigma(\omega) between the two models are found and discussed. The influence of the electron-phonon coupling and the electrostatic repulsion on the bipolaron binding energy, bipolaron masses, and correlation functions is investigated.Comment: 9 pages including 11 figures. To appear in PR

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    Development of a concept and basis for the DEMO diagnostic and control system

    Get PDF
    An initial concept for the plasma diagnostic and control (D&C) system has been developed as part of European studies towards the development of a demonstration tokamak fusion reactor (DEMO). The main objective is to develop a feasible, integrated concept design of the DEMO D&C system that can provide reliable plasma control and high performance (electricity output) over extended periods of operation. While the fusion power is maximized when operating near to the operational limits of the tokamak, the reliability of operation typically improves when choosing parameters significantly distant from these limits. In addition to these conflicting requirements, the D&C development has to cope with strong adverse effects acting on all in vessel components on DEMO (harsh neutron environment, particle fluxes, temperatures, electromagnetic forces, etc.). Moreover, space allocation and plasma access are constrained by the needs for first wall integrity and optimization of tritium breeding. Taking into account these boundary conditions, the main DEMO plasma control issues have been formulated, and a list of diagnostic systems and channels needed for plasma control has been developed, which were selected for their robustness and the required coverage of control issues. For a validation and refinement of this concept, simulation tools are being refined and applied for equilibrium, kinetic and mode control studies

    Insulated fixation system of plasma facing components to the divertor cassette in Eurofusion-DEMO

    No full text
    The design activities of an insulated Plasma Facing Components-Cassette Body (PFCs-CB) support has been carried out under the pre-conceptual design phase for Eurofusion-DEMO Work Package DIV-1 “Divertor Cassette Design and Integration” - Eurofusion Power Plant Physics & Technology (PPPT) program. The Eurofusion-DEMO divertor is a key in-vessel component with PFCs which directly interact with the plasma scrape-off layer. The PFCs have to cope with high heat loads, neutron irradiation and electromagnetic loads. The mechanical integrity of the PFCs and water cooling pipes can be jeopardized by high heat loads and by electromagnetic loads generated in a disruption event. In European-DEMO the possibility to estimate the heat load by measuring the relative thermocurrents is under investigation. In order to allow thermocurrents measurements, a divertor design option provides that PFCs are electrically insulated from CB. In this work authors aim to analyze the opportunity that the PFC-CB fixing system incorporates an electrical insulation system, thus acquiring also an important diagnostic role in the measurement of the thermocurrents and in the management of the current flows. The possible use of ceramic material (e.g. alumina) as the insulating layer between the support components is investigated
    corecore