2,036 research outputs found

    The rich circumstellar chemistry of SMP LMC 11

    Get PDF
    Carbon-rich evolved stars from the asymptotic giant branch to the planetary nebula phase are characterized by a rich and complex carbon chemistry in their circumstellar envelopes. A peculiar object is the preplanetary nebula SMP LMC 11, whose Spitzer Infrared Spectrograph spectrum shows remarkable and diverse molecular absorption bands. To study howthe molecular composition in this object compares to our current understanding of circumstellar carbon chemistry, we modeled this molecular absorption. We find high abundances for a number of molecules, perhaps most notably benzene. We also confirm the presence of propyne (CH3C2H) in this spectrum. Of all the cyanopolyynes, only HC3N is evident; we can detect at best a marginal presence of HCN. From comparisons to various chemical models, we can conclude that SMP LMC 11 must have an unusual circumstellar environment (a torus rather than an outflow)

    The secret world of shrimps: polarisation vision at its best

    Get PDF
    Animal vision spans a great range of complexity, with systems evolving to detect variations in optical intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision. Polarisation is fully measured via Stokes' parameters--obtained by combined linear and circular polarisation measurements. Optimal polarisation vision is the ability to see Stokes' parameters: here we show that the crustacean \emph{Gonodactylus smithii} measures the exact components required. This vision provides optimal contrast-enhancement, and precise determination of polarisation with no confusion-states or neutral-points--significant advantages. We emphasise that linear and circular polarisation vision are not different modalities--both are necessary for optimal polarisation vision, regardless of the presence of strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table

    Reviews

    Get PDF
    The following publications have been reviewed by the mentioned authors;Welsh Crafts by Mary Eirwen Jones, reviewed by Roy NashA Source Book of Picture Making by Henry Pluckrose, reviewed by R. HartApproaches to Drawing by Leo Walmsley, reviewed by John EgglestonMoulded and Slip Cast Pottery and Ceramics by David Cowley, reviewed by Michael PaffardPainting by John Lancaster, reviewed by R. N. MacGregorDesign Resource Sheets by R. N. Billington and J. R. Jeffrey, reviewed by Dick SuttonEnamelling on Metal, Oppi. Intracht, reviewed by J. N. AtkinsProcesses by Jack Bainbridge, reviewed by Michael SayerArtists and People by Su Braden, reviewed by Roy ShawMake Your Own Musical Instrument by Stuart Dalby, reviewed by Eric DecorteDesign in General Education by John Harahan, reviewed by Bernard AylwardPainting Without a Brush by Roy Sparkes, reviewed by John LancasterBuilding Craft Equipment by A. Jay and Carol W. Abrams, reviewed by S. R. BlundellPyrography by Berhand Havez and Jean-Claude Varlet, reviewed by Paul Kin

    Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide

    Full text link
    Understanding the influence of macromolecular crowding and nanoparticles on the formation of in-register β\beta-sheets, the primary structural component of amyloid fibrils, is a first step towards describing \emph{in vivo} protein aggregation and interactions between synthetic materials and proteins. Using all atom molecular simulations in implicit solvent we illustrate the effects of nanoparticle size, shape, and volume fraction on oligomer formation of an amyloidogenic peptide from the transthyretin protein. Surprisingly, we find that inert spherical crowding particles destabilize in-register β\beta-sheets formed by dimers while stabilizing β\beta-sheets comprised of trimers and tetramers. As the radius of the nanoparticle increases crowding effects decrease, implying smaller crowding particles have the largest influence on the earliest amyloid species. We explain these results using a theory based on the depletion effect. Finally, we show that spherocylindrical crowders destabilize the ordered β\beta-sheet dimer to a greater extent than spherical crowders, which underscores the influence of nanoparticle shape on protein aggregation

    The future of sovereignty in multilevel governance Europe: a constructivist reading

    Get PDF
    Multilevel governance presents a depiction of contemporary structures in EU Europe as consisting of overlapping authorities and competing competencies. By focusing on emerging non-anarchical structures in the international system, hence moving beyond the conventional hierarchy/anarchy dichotomy to distinguish domestic and international arenas, this seems a radical transformation of the familiar Westphalian system and to undermine state sovereignty. Paradoxically, however, the principle of sovereignty proves to be resilient despite its alleged empirical decline. This article argues that social constructivism can explain the paradox, by considering sovereign statehood as a process-dependent institutional fact, and by showing that multilevel governance can feed into this process

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N∗(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N∗(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N∗(1535)N^{*}(1535), these are: N∗(1440),N∗(1520),N∗(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N∗(1710)N^{*}(1710). The amplitudes for the π∘\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N∗(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N∗(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×10−1GeV−1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×10−1GeV−1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N∗(1535)→γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×10−3GeV−1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×10−3GeV−1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.
    • …
    corecore