30,905 research outputs found
Contrasts between Equilibrium and Non-equilibrium Steady States: Computer Aided Discoveries in Simple Lattice Gases
A century ago, the foundations of equilibrium statistical mechanics were
laid. For a system in equilibrium with a thermal bath, much is understood
through the Boltzmann factor, exp{-H[C]/kT}, for the probability of finding the
system in any microscopic configuration C. In contrast, apart from some special
cases, little is known about the corresponding probabilities, if the same
system is in contact with more than one reservoir of energy, so that, even in
stationary states, there is a constant energy flux through our system. These
non-equilibrium steady states display many surprising properties. In
particular, even the simplest generalization of the Ising model offers a wealth
of unexpected phenomena. Mostly discovered through Monte Carlo simulations,
some of the novel properties are understood while many remain unexplained. A
brief review and some recent results will be presented, highlighting the sharp
contrasts between the equilibrium Ising system and this non-equilibrium
counterpart.Comment: 9 pages, 3 figure
The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development
Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included
Linear growth of spiral SASI modes in core-collapse supernovae
Two-dimensional axisymmetric simulations have shown that the post-bounce
accretion shock in core collapse supernovae is subject to the Spherical
Accretion Shock Instability, or SASI. Recent three-dimensional simulations have
revealed the existence of a non-axisymmetric mode of the SASI as well, where
the postshock flow displays a spiral pattern. Here we investigate the growth of
these spiral modes using two-dimensional simulations of the post-bounce
accretion flow in the equatorial plane of a core-collapse supernova. By
perturbing a steady-state model we are able to excite both one, two and
three-armed spiral modes that grow exponentially with time, demonstrating that
these are linearly unstable modes closely related to the original axisymmetric
sloshing modes. By tracking the distribution of angular momentum, we show that
these modes are able to efficiently separate the angular momentum of the
accretion flow (which maintains a net angular momentum of zero), leading to a
significant spin-up of the underlying accreting proto-neutron star.Comment: To be published in The Astrophysical Journa
Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing
Laser Interferometer Gravitational-Wave Observatory (LIGO) is a joint project of the California Institute of Technology and the Massachusetts Institute of Technology funded by the National Science Foundation. The project is designed to detect gravitational waves from astrophysical sources such as supernova and black holes. The LIGO project constructed observatories at two sites in the U.S. Each site includes two beam tubes (each 4 km long) joined to form an "L" shape. The beam tube is a 1.25 m diam 304 L stainless steel, ultrahigh vacuum tube that will operate at 1×10^–9 Torr or better. The beam tube was manufactured using a custom spiral weld tube mill from material processed to reduce the outgassing rate in order to minimize pumping costs. The integrity of the beam tube was assured by helium mass spectrometer leak testing each component of the beam tube system prior to installation. Each 2 km long, isolatable beam tube module was then leak tested after completion
Throat stability-by pass systems to increase the stable airflow range of a Mach 2.5 inlet with 60-percent internal contraction
The results of an experimental investigation to increase the stable airflow range (without unstart) of a supersonic mixed-compression inlet are presented. Various stability bypass entrances were located on the cowl side of the inlet throat. The types of entrance were distributed porous (normal holes), forward-slanted slot, and distributed educated slots. A large stable airflow range was obtained for each entrance type if a constant pressure was maintained in the stability bypass plenum. The distributed porous entrance provided the largest stable airflow range. Inlet unstart angle of attack was unaffected by the entrances
- …