26,908 research outputs found

    Exclusion process for particles of arbitrary extension: Hydrodynamic limit and algebraic properties

    Full text link
    The behaviour of extended particles with exclusion interaction on a one-dimensional lattice is investigated. The basic model is called \ell-ASEP as a generalization of the asymmetric exclusion process (ASEP) to particles of arbitrary length \ell. Stationary and dynamical properties of the \ell-ASEP with periodic boundary conditions are derived in the hydrodynamic limit from microscopic properties of the underlying stochastic many-body system. In particular, the hydrodynamic equation for the local density evolution and the time-dependent diffusion constant of a tracer particle are calculated. As a fundamental algebraic property of the symmetric exclusion process (SEP) the SU(2)-symmetry is generalized to the case of extended particles

    Two-Channel Totally Asymmetric Simple Exclusion Processes

    Full text link
    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. An extensive computer Monte Carlo simulations fully support the theoretical predictions.Comment: 13 pages, 10 figure

    The Case for an Accelerating Universe from Supernovae

    Get PDF
    The unexpected faintness of high-redshift Type Ia supernovae (SNe Ia), as measured by two teams, has been interpreted as evidence that the expansion of the Universe is accelerating. We review the current challenges to this interpretation and seek to answer whether the cosmological implications are compelling. We discuss future observations of SNe Ia which could offer extraordinary evidence to test acceleration.Comment: To appear as an Invited Review for PASP 20 pages, 13 figure

    Ultrabroad-bandwidth multifrequency Raman generation

    Get PDF
    We report on the modeling of transient stimulated rotational Raman scattering in H2 gas. We predict a multifrequency output, spanning a bandwidth greater than the pump frequency, that may be generated without any significant delay with respect to the pump pulses. The roles of dispersion and transiency are quantified

    Reconstruction on trees and spin glass transition

    Full text link
    Consider an information source generating a symbol at the root of a tree network whose links correspond to noisy communication channels, and broadcasting it through the network. We study the problem of reconstructing the transmitted symbol from the information received at the leaves. In the large system limit, reconstruction is possible when the channel noise is smaller than a threshold. We show that this threshold coincides with the dynamical (replica symmetry breaking) glass transition for an associated statistical physics problem. Motivated by this correspondence, we derive a variational principle which implies new rigorous bounds on the reconstruction threshold. Finally, we apply a standard numerical procedure used in statistical physics, to predict the reconstruction thresholds in various channels. In particular, we prove a bound on the reconstruction problem for the antiferromagnetic ``Potts'' channels, which implies, in the noiseless limit, new results on random proper colorings of infinite regular trees. This relation to the reconstruction problem also offers interesting perspective for putting on a clean mathematical basis the theory of glasses on random graphs.Comment: 34 pages, 16 eps figure

    Local Inhomogeneity in Asymmetric Simple Exclusion Processes with Extended Objects

    Full text link
    Totally asymmetric simple exclusion processes (TASEP) with particles which occupy more than one lattice site and with a local inhomogeneity far away from the boundaries are investigated. These non-equilibrium processes are relevant for the understanding of many biological and chemical phenomena. The steady-state phase diagrams, currents, and bulk densities are calculated using a simple approximate theory and extensive Monte Carlo computer simulations. It is found that the phase diagram for TASEP with a local inhomogeneity is qualitatively similar to homogeneous models, although the phase boundaries are significantly shifted. The complex dynamics is discussed in terms of domain-wall theory for driven lattice systems.Comment: 11 pages, 5 figure

    Towards a model for protein production rates

    Full text link
    In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two ``bottlenecks'' (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel ``edge'' effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.Comment: 8 pages, 8 figure

    Photoassisted sequential resonant tunneling through superlattices

    Full text link
    We have analyzed theoretically the photoassisted tunneling current through a superlattice in the presence of an AC potential. For that purpose we have developed a new model to calculate the sequential resonant currrent trhough a superlattice based in the TRansfer Hamiltonian Method. The tunneling current presents new features due to new effective tunneling chanels coming from the photoside bands induced by the AC field. Our theoretical results are in good agreement with the available experimental evidence.Comment: Revtex 3.0 4 pages, 4 figures uuencoded compressed tar-fil
    corecore