29,626 research outputs found

    Circuit minimizes current drain caused by neon indicator lamps

    Get PDF
    Circuit lights neon lamp by back leakage current of the driving transistor, rather than by the transistors saturation or ''on-state'' current, thereby eliminating lowering of the voltage necessary for indication. Circuit has operating speed greater than indication circuit using a saturation principle and aids in power rationing

    Depositing spacing layers on magnetic film with liquid phase epitaxy

    Get PDF
    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided

    Ice shapes and the resulting drag increase for a NACA 0012 airfoil

    Get PDF
    Experimental measurements of the ice shapes and resulting drag increases were measured in the NASA-Lewis Icing Research Tunnel. The measurements were made over a large range of conditions (e.g., airspeed and temperature, drop size and liquid water content of the cloud, and the angle of attack of the airfoil). The measured drag increase did not agree with the existing correlation. Additional results were given which are helpful in understanding the ice structure and the way it forms, and in improving the ice accretion modeling theories. There are data on the ice surface roughness, on the effect of the ice shape on the local droplet catch, and on the relative importance of various parts of the ice shape on the drag increase. Experimental repeatability is also discussed

    The inviscid stability of supersonic flow past a sharp cone

    Get PDF
    The laminar boundary layer which forms on a sharp cone in a supersonic freestream, where lateral curvature plays a key role in the physics of the problem is considered. This flow is then analyzed from the point of view of linear, temporal, inviscid stability. The basic, non-axisymmetric disturbance equations are derived for general flows of this class, and a so called triply generalized inflexion condition is found for the existence of subsonic neutral modes of instability. This condition is analogous to the well-known generalized inflexion condition found in planar flows, although in the present case the condition depends on both axial and aximuthal wavenumbers. Extensive numerical results are presented for the stability problem at a freestream Mach number of 3.8, for a range of streamwise locations. These results reveal that a new mode of instability may occur, peculiar to flows of this type involving curvature. Additionally, asymptotic analyses valid close to the tip of the cone, far downstream of the cone are presented, and these give a partial (asymptotic) description of this additional mode of instability

    The inter-relation between policy and practice for transitions from hospital to home: An ethnographic case study in England’s National Health Service

    Get PDF
    © 2014 Shaw et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.No abstract available (poster presentation)

    Investigation of the growth of garnet films by liquid phase epitaxy

    Get PDF
    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted

    NASA Lewis Research Center's Program on Icing Research

    Get PDF
    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described

    Aircraft icing research at NASA

    Get PDF
    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information

    Throat stability-by pass systems to increase the stable airflow range of a Mach 2.5 inlet with 60-percent internal contraction

    Get PDF
    The results of an experimental investigation to increase the stable airflow range (without unstart) of a supersonic mixed-compression inlet are presented. Various stability bypass entrances were located on the cowl side of the inlet throat. The types of entrance were distributed porous (normal holes), forward-slanted slot, and distributed educated slots. A large stable airflow range was obtained for each entrance type if a constant pressure was maintained in the stability bypass plenum. The distributed porous entrance provided the largest stable airflow range. Inlet unstart angle of attack was unaffected by the entrances

    Heat transfer distributions around nominal ice accretion shapes formed on a cylinder in the NASA Lewis icing research tunnel

    Get PDF
    Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The ice shapes were grown on a 5.1 cm (2.0 in.) diameter cylinder in the NASA Lewis Icing Research Tunnel. The shapes were 2, 5, and 15 min accumulations of glaze ice and 15 min accumulation of rime ice. Heat transfer coefficients were also measured around the cylinder with no ice accretion. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients around the perimeter of each shape were measured with electrically heated copper strips embedded in the surface of the model which was cast from polyurethane foam. Each strip contained a thermocouple to measure the local surface temperature. The models were run in a 15.2 x 68.6 cm (6 x 27 in.) wind tunnel at several velocities. Background turbulence in the wind tunnel was less than 0.5 percent. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence at the model location with the model removed. The effect of roughness was also simulated with sand grains glued to the surface. Results are presented as Nusselt number versus angle from the stagnation line for the smooth and rough models for both high and low levels of free stream turblence. Roughness of the surface in the region prior to flow separation plays a major role in determining the heat transfer distribution
    • …
    corecore