440 research outputs found

    Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses

    Get PDF
    The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response

    An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness

    Get PDF
    The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates’ mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells ‘feel’ substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine

    Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection.</p> <p>Results</p> <p>18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period.</p> <p>Conclusions</p> <p>Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape.</p

    Fruit and vegetable knowledge and intake within an Australian population: The ausdiab study

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Understanding the relationship between fruit and vegetable knowledge (FVK) and fruit and vegetable intake (FVI) is an important consideration for improved public health and successful targeting of health promotion messaging. The aim of this study was to investigate the association between FVK and FVI in Australian adults and to identify subgroups most at risk of poor knowledge. Using data from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab), we investigated associations between FVK and FVI, as well as demographic and lifestyle factors. Baseline FVK was measured using two self-reported questions. FVI was assessed using a validated, self-reported, food frequency questionnaire in 1999/00 (baseline), 2004/05, and 2011/12. Amongst the 8966 participants assessed at baseline, 24.1% had adequate, 73.0% had insufficient, and 2.9% had poor FVK. Using linear regression, those with insufficient or poor FVK reported significantly lower FVI (grams/day) compared to those with adequate FVK: baseline (coefficient (95%CI)): −67.1 (−80.0, −54.3) and −124.0 (−142.9, −105.1), respectively, whilst, at 12 years, the differences were −42.5 (−54.6, −30.5) and −94.6 (−133.8, −55.5) grams/day, respectively (all p \u3c 0.001). Poor FVK was more likely to be reported in males, older individuals (\u3e65 years), socio-economically disadvantaged, smokers, and those with insufficient physical activity/sedentary behavior. We demonstrate that having adequate knowledge of FVI, defined as knowing to consume fruit and vegetables several times a day for a well-balanced diet, is strongly associated with FVI, with several demographic and lifestyle factors predicting FVK. Health promotion messages aimed at increasing FVK should target these subgroups for maximal effect

    Associations between fruit intake and risk of diabetes in the AusDiab cohort

    Get PDF
    Context Fruit, but not fruit juice, intake is inversely associated with type 2 diabetes mellitus (T2DM). However, questions remain about the mechanisms by which fruits may confer protection. Objective The aims of this work were to examine associations between intake of fruit types and 1) measures of glucose tolerance and insulin sensitivity and 2) diabetes at follow-up. Methods Among participants of the Australian Diabetes, Obesity and Lifestyle Study, fruit and fruit juice intake was assessed by food frequency questionnaire at baseline. Associations between fruit and fruit juice intake and 1) fasting plasma glucose, 2-hour postload plasma glucose, updated homeostasis model assessment of insulin resistance of β-cell function (HOMA2-%β), HOMA2 of insulin sensitivity (HOMA2-%S), and fasting insulin levels at baseline and 2) the presence of diabetes at follow-up (5 and 12 years) were assessed using restricted cubic splines in logistic and linear regression models. Results This population of 7675 Australians (45% males) had a mean ± SD age of 54 ± 12 years at baseline. Total fruit intake was inversely associated with serum insulin and HOMA2-%β, and positively associated with HOMA2-%S at baseline. Compared to participants with the lowest intakes (quartile 1), participants with moderate total fruit intakes (quartile 3) had 36% lower odds of having diabetes at 5 years (odds ratio, 0.64; 95% CI, 0.44-0.92), after adjusting for dietary and lifestyle confounders. Associations with 12-year outcomes were not statistically significant. Conclusion A healthy diet including whole fruits, but not fruit juice, may play a role in mitigating T2DM risk

    An engineered nanosugar enables rapid and sustained glucose-responsive insulin delivery in diabetic mice

    Get PDF
    Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (approximate to 95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL(-1)) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar
    corecore