8 research outputs found

    Mass Balance and Pharmacokinetics of [14C]Telavancin following Intravenous Administration to Healthy Male Volunteers▿

    No full text
    The mass balance and pharmacokinetics of telavancin, a semisynthetic lipoglycopeptide antimicrobial agent, were characterized in an open-label, phase 1 study of six healthy male subjects. After a single 1-h intravenous infusion of 10 mg/kg [14C]telavancin (0.68 μCi/kg), blood, urine, and feces were collected at regular intervals up to 216 h postdose. Whole blood, plasma, urine, and fecal samples were assayed for total radioactivity using scintillation counting; plasma and urine were also assayed for parent drug and metabolites using liquid chromatography with tandem mass spectrometry. The concentration-time profiles for telavancin and total radioactivity in plasma were comparable from 0 to 24 h after the study drug administration. Telavancin accounted for >95% and 83% of total radioactivity in plasma at 12 h and 24 h, respectively. By 216 h, approximately 76% of the total administered dose was recovered in urine while only 1% was collected in feces. Unchanged telavancin accounted for most (83%) of the eliminated dose. Telavancin metabolite THRX-651540 along with two other hydroxylated metabolites (designated M1 and M2) accounted for the remaining radioactivity recovered from urine. The mean concentrations of total radioactivity in whole blood were lower than the concentration observed in plasma, and mean concentrations of THRX-651540 in plasma were minimal relative to mean plasma telavancin concentrations. These observations demonstrate that most of an administered telavancin dose is eliminated unchanged via the kidneys. Intravenous telavancin at 10 mg/kg was well tolerated by all subjects

    Tissue Penetration of Telavancin after Intravenous Administration in Healthy Subjects

    No full text
    The pharmacokinetic disposition of telavancin administered 7.5 mg/kg of body weight every 24 h was determined in plasma and skin blister fluid. The mean penetration of telavancin into blister fluid was 40%. This study reveals that adequate concentrations are achieved in both plasma and blister fluid for pathogens frequently implicated in skin and soft tissue infections

    Pharmacodynamics of Telavancin (TD-6424), a Novel Bactericidal Agent, against Gram-Positive Bacteria

    No full text
    Telavancin (TD-6424) is a novel lipoglycopeptide that produces rapid and concentration-dependent killing of clinically relevant gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacodynamics of telavancin in the mouse neutropenic thigh (MNT) and mouse subcutaneous infection (MSI) animal models. Pharmacokinetic-pharmacodynamic studies in the MNT model demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio was the best predictor of efficacy. Telavancin produced dose-dependent reduction of thigh titers of several organisms, including methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), penicillin-susceptible and -resistant strains of Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecalis. The 50% effective dose (ED(50)) estimates for telavancin ranged from 0.5 to 6.6 mg/kg of body weight (administered intravenously), and titers were reduced by up to 3 log(10) CFU/g from pretreatment values. Against MRSA ATCC 33591, telavancin was 4- and 30-fold more potent (on an ED(50) basis) than vancomycin and linezolid, respectively. Against MSSA ATCC 13709, telavancin was 16- and 40-fold more potent than vancomycin and nafcillin, respectively. Telavancin, vancomycin, and linezolid were all efficacious and more potent against MRSA ATCC 33591 in the MSI model compared to the MNT model. This deviation in potency was, however, disproportionately greater for vancomycin and linezolid than for telavancin, suggesting that activity of telavancin is less affected by the immune status. The findings of these studies collectively suggest that once-daily dosing of telavancin may provide an effective approach for the treatment of clinically relevant infections with gram-positive organisms
    corecore