1,033 research outputs found

    Sex bias in tuberculosis in the developing world

    Get PDF
    Tuberculosis (TB), the most deadly global single organism infectious disease, kills nearly twice as many men as women. Understanding the factors that drive this bias in TB mortality is an important aspect of the global effort to reduce the enormous burden of this disease in the developing world. One third of the world’s population is estimated to be infected TB, with Low and Middle Income Countries (LMIC) bearing the greatest disease burden. In LMIC sex bias in TB is influenced by sociocultural, behavioural as well as biological factors, with dynamic interactions between reporting variables, other confounding variables and physiological mechanisms, which each influence one another to produce the male-biased sex ratio observed in TB transmission, prevalence and mortality. While confounding factors are addressed in the existing global drive to tackle TB it is the biological aspects of sex bias in TB that present specific challenges for diagnosis and treatment in men and women as they potentially influence future immunological-based interventions to treat TB

    Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development

    The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    Get PDF
    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair (MMR) gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1¬ and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks

    Mediators in infrastructure survivability enhancement

    Get PDF
    ABSTRACT A key research priority for the next decade is the protection of critical, software-intensive infrastructures-e.g., electric power, banking, telecommunications, and transportation. The problem is complicated by the need to enhance existing systems. We describe one approach to survivability enhancement. In 1997 the Internet failed when corrupt data was disseminated at the top level of the Domain Name System. We replicated this failure and developed a solution based on transparent insertion of mediators to enforce survivability policies. Our approach promises to ease survivability enhancement in two ways: transparent insertion eases system architectural evolution; and modularization of survivability policy implementations eases the evolution of both survivability policies and the systems into which our mediators are inserted

    IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain.

    No full text
    It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection

    Rasch analysis of the hospital anxiety and depression scale (hads) for use in motor neurone disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Hospital Anxiety and Depression Scale (HADS) is commonly used to assess symptoms of anxiety and depression in motor neurone disease (MND). The measure has never been specifically validated for use within this population, despite questions raised about the scale's validity. This study seeks to analyse the construct validity of the HADS in MND by fitting its data to the Rasch model.</p> <p>Methods</p> <p>The scale was administered to 298 patients with MND. Scale assessment included model fit, differential item functioning (DIF), unidimensionality, local dependency and category threshold analysis.</p> <p>Results</p> <p>Rasch analyses were carried out on the HADS total score as well as depression and anxiety subscales (HADS-T, D and A respectively). After removing one item from both of the seven item scales, it was possible to produce modified HADS-A and HADS-D scales which fit the Rasch model. An 11-item higher-order HADS-T total scale was found to fit the Rasch model following the removal of one further item.</p> <p>Conclusion</p> <p>Our results suggest that a modified HADS-A and HADS-D are unidimensional, free of DIF and have good fit to the Rasch model in this population. As such they are suitable for use in MND clinics or research. The use of the modified HADS-T as a higher-order measure of psychological distress was supported by our data. Revised cut-off points are given for the modified HADS-A and HADS-D subscales.</p

    Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics

    Get PDF
    How avifauna respond to the long-term loss and fragmentation of tropical forests is a critical issue in biodiversity management. We use data from over 30 years to gain insights into such changes in the northernmost Neotropical rainforest in the Sierra de Los Tuxtlas of southern Veracruz, Mexico. This region has been extensively deforested over the past half-century. The Estación de Biología Tropical Los Tuxtlas, of the Universidad Nacional Autónoma de México (UNAM), protects a 640 ha tract of lowland forest. It became relatively isolated from other forested tracts between 1975 and 1985, but it retains a corridor of forest to more extensive forests at higher elevations on Volcán San Martín. Most deforestation in this area occurred during the 1970s and early 1980s. Forest birds were sampled on the station and surrounding areas using mist nets during eight non-breeding seasons from 1973 to 2004 (though in some seasons netting extended into the local breeding season for some species). Our data suggested extirpations or declines in 12 species of birds subject to capture in mist nets. Six of the eight species no longer present were captured in 1992–95, but not in 2003–2004. Presence/absence data from netting and observational data suggested that another four low-density species also disappeared since sampling began. This indicates a substantial time lag between the loss of habitat and the apparent extirpation of these species. Delayed species loss and the heterogeneous nature of the species affected will be important factors in tropical forest management and conservation
    corecore