928 research outputs found

    Knowledge modeling for software design

    Get PDF
    This paper develops a modeling framework for systems engineering that encompasses systems modeling, task modeling, and knowledge modeling, and allows knowledge engineering and software engineering to be seen as part of a unified developmental process. This framework is used to evaluate what novel contributions the 'knowledge engineering' paradigm has made and how these impact software engineering

    Improving Safety for Recreational Water Sports at Candlewood Lake, CT

    Get PDF
    Every year millions of people utilize bodies of water to participate in recreationally acitvity. Although the time spent outside and being physically active are widely endorsed as healthy habits, any body of water comes with safety risks that many do not anticipate. This project looked to improve safety for recreationally water sports and activity at Candlewood Lake, CT the largest lake in the state that is accessed by thousands evach year

    Five things every clinician should know about AI ethics in intensive care

    Get PDF

    Uranyl to Uranium(IV) Conversion through Manipulation of Axial and Equatorial Ligands

    Get PDF
    The controlled manipulation of the axial oxo and equatorial halide ligands in the uranyl dipyrrin complex, UO2Cl(L), allows the uranyl reduction potential to be shifted by 1.53 V into the range accessible to naturally occurring reductants that are present during uranium remediation and storage processes. Abstraction of the equatorial halide ligand to form the uranyl cation causes a 780 mV positive shift in the UV/UIV reduction potential. Borane functionalization of the axial oxo groups causes the spontaneous homolysis of the equatorial U–Cl bond and a further 750 mV shift of this potential. The combined effect of chloride loss and borane coordination to the oxo groups allows reduction of UVI to UIV by H2 or other very mild reductants such as Cp*2Fe. The reduction with H2 is accompanied by a B–C bond cleavage process in the oxo-coordinated borane

    Evidence That the P\u3csub\u3ei\u3c/sub\u3e Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle

    Get PDF
    Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein–protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle

    Inhibition of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl- ÊŸ, ÊŸ-diaminopimelic Acid Desuccinylase from \u3cem\u3eNeisseria meningitidis\u3c/em\u3e by ÊŸ-Captopril

    Get PDF
    Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes

    5-HT2C Receptor Agonist Anorectic Efficacy Potentiated by 5-HT1B Receptor Agonist Coapplication: An Effect Mediated via Increased Proportion of Pro-Opiomelanocortin Neurons Activated

    Get PDF
    An essential component of the neural network regulating ingestive behavior is the brain 5-hydroxytryptamine2C receptor (5-HT2CR), agonists of which suppress food intake and were recently approved for obesity treatment by the US Food and Drug Administration. 5-HT2CR-regulated appetite is mediated primarily through activation of hypothalamic arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons, which are also disinhibited through a 5-HT1BR-mediated suppression of local inhibitory inputs. Here we investigated whether 5-HT2CR agonist anorectic potency could be significantly enhanced by coadministration of a 5-HT1BR agonist and whether this was associated with augmented POMC neuron activation on the population and/or single-cell level. The combined administration of subanorectic concentrations of 5-HT2CR and 5-HT1BR agonists produced a 45% reduction in food intake and significantly greater in vivo ARC neuron activation in mice. The chemical phenotype of activated ARC neurons was assessed by monitoring agonist-induced cellular activity via calcium imaging in mouse POMC-EGFP brain slices, which revealed that combined agonists activated significantly more POMC neurons (46%) compared with either drug alone (~25% each). Single-cell electrophysiological analysis demonstrated that 5-HT2CR/5-HT1BR agonist coadministration did not significantly potentiate the firing frequency of individual ARC POMC-EGFP cells compared with agonists alone. These data indicate a functional heterogeneity ofARCPOMCneurons by revealing distinct subpopulations of POMC cells activated by 5-HT2CRs and disinhibited by 5-HT1BRs. Therefore, coadministration of a 5-HT1BR agonist potentiates the anorectic efficacy of 5-HT2CR compounds by increasing the number, but not the magnitude, of activated ARC POMC neurons and is of therapeutic relevance to obesity treatment. © 2013 the authors
    • …
    corecore