218 research outputs found
Proof of the perpetuity equation
AbstractA perpetuity is a perpetual annuity. Although there have been a number of different derivations, which we discuss in detail, we present what appears to be the first mathematical proof of the perpetuity equation based on the fundamental properties of the real numbers (Result (2.2.1) of Dieudonne (1960) [14])
Recommended from our members
The Role of 3D Modelling and Printing in Orthopaedic Tissue Engineering: A Review of the Current Literature.
Orthopaedic surgery lends itself well to advances in technology. An area of interest and ongoing research is that of the production of scaffolds for use in trauma and elective surgery. 3D printing provides unprecedented accuracy in terms of micro- and macro-structure and geometry for scaffold production. It can also be utilised to construct scaffolds of a variety of different materials and more recently has allowed for the construction of bio-implants which recapitulate bone and cartilage tissue. This review seeks to look at the various methods of 3DP, the materials used, elements of functionality and design, as well as modifications to increase the biomechanics and bioactivity of 3DP scaffolds.This is the author accepted manuscript. The final version is available from Bentham Science via http://dx.doi.org/10.2174/1574888X1166616042912223
Should I endorse a third party? Authorization strategies for brand manufacturers in a refurbishing market
Original equipment manufacturers (OEM) may have little or no control over third-party (3P) refurbishing firms. With the rapid growth of the refurbished market for electronic products, we study whether it is beneficial for an OEM to cooperate with a 3P via authorization schemes that boost an OEM’s brand reputations, increase their sales, and strengthen consumer acceptance of authorized 3P’s refurbished products. We examine the conditions under which both the OEM and the 3P benefit from the authorization strategy, studying the trade-off between the indirect benefit of authorizing a 3P to increase market share and the downside of cannibalizing new-product sales. To estimate our model’s behavioral parameters, we conduct an extensive experiment on MTurk to capture consumer preferences and cannibalization effects. The experimental study examines the price-perceived quality relationship along with brand value, seller identity (OEM, 3P), and product condition; its results show that the discount and seller identity play a large role in consumer choice and that cannibalization is generally linear in price. We subsequently construct a revenue maximizing model that incorporates this linear cannibalization effect, along with the authorization fees. We show that refurbished products offered by authorized 3Ps have higher demand than those that are not authorized and that it is beneficial for 3Ps to participate in these schemes despite the authorization fees. We conclude that authorization can be a win–win strategy for OEMs and 3Ps, especially when low-end consumer demand and average reduction of refurbishing costs are relatively high, and the level of cannibalization is relatively low. To achieve win–win solutions, it is important for OEMs and 3Ps to consider brand recognition, consumer behavior related to refurbished products, and remanufacturable supply.</p
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
Dendritic Cell-Derived TSLP Negatively Regulates HIF-1α and IL-1β during Dectin-1 signaling
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Thymic stromal lymphopoietin (TSLP) is a functionally pleotropic cytokine important in immune regulation, and TSLP dysregulation is associated with numerous diseases. TSLP is produced by many cell types, but has predominantly been characterized as a secreted factor from epithelial cells which activates dendritic cells (DC) that subsequently prime T helper (TH) 2 immunity. However, DC themselves make significant amounts of TSLP in response to microbial products, but the functional role of DC-derived TSLP remains unclear. We show that TSLPR signaling negatively regulates IL-1β production during dectin-1 stimulation of human DC. This regulatory mechanism functions by dampening Syk phosphorylation and is mediated via NADPH oxidase-derived ROS, HIF-1α and pro-IL-1β expression. Considering the profound effect TSLPR signaling has on the metabolic status and the secretome of dectin-1 stimulated DC, these data suggest that autocrine TSLPR signaling could have a fundamental role in modulating immunological effector responses at sites removed from epithelial cell production of TSLP
Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses.
The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4'phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases
Motor neuronopathy with dropped hands and downbeat nystagmus: A distinctive disorder? A case report
BACKGROUND: Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. CASE PRESENTATION: All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. CONCLUSION: The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome
Dendritic Cell-Derived TSLP Negatively Regulates HIF-1α and IL-1β During Dectin-1 Signaling
Thymic stromal lymphopoietin (TSLP) is a functionally pleotropic cytokine important in immune regulation, and TSLP dysregulation is associated with numerous diseases. TSLP is produced by many cell types, but has predominantly been characterized as a secreted factor from epithelial cells which activates dendritic cells (DC) that subsequently prime T helper (TH) 2 immunity. However, DC themselves make significant amounts of TSLP in response to microbial products, but the functional role of DC-derived TSLP remains unclear. We show that TSLPR signaling negatively regulates IL-1β production during dectin-1 stimulation of human DC. This regulatory mechanism functions by dampening Syk phosphorylation and is mediated via NADPH oxidase-derived ROS, HIF-1α and pro-IL-1β expression. Considering the profound effect TSLPR signaling has on the metabolic status and the secretome of dectin-1 stimulated DC, these data suggest that autocrine TSLPR signaling could have a fundamental role in modulating immunological effector responses at sites removed from epithelial cell production of TSLP
Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus.
Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin-NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin-NFAT occurs via the phagocytic Dectin-1-spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9-BTK-calcineurin-NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis
Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides
BACKGROUND: Cellulose acetate phthalate (CAP) in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH < 5.5, normal for microbicide target sites. Therefore, the interaction between insoluble micronized CAP and HIV-1 was studied. Carbomer 974P/BufferGel; carrageenan; cellulose sulfate; dextran/dextrin sulfate, poly(napthalene sulfonate) and poly(styrene-4-sulfonate) are also being considered as anti-HIV-1 microbicides, and their antiviral properties were compared with those of CAP. METHODS: Enzyme linked immunosorbent assays (ELISA) were used to (1) study HIV-1 IIIB and BaL binding to micronized CAP; (2) detect virus disintegration; and (3) measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. RESULTS: 1) HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2) The interaction between HIV-1 and micronized CAP led to: (a) gp41 six-helix bundle formation; (b) virus disintegration and shedding of envelope glycoproteins; and (c) rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate), in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. CONCLUSIONS: Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect
- …