249 research outputs found

    The limiting behavior of some infinitely divisible exponential dispersion models

    Full text link
    Consider an exponential dispersion model (EDM) generated by a probability μ \mu on [0,)[0,\infty ) which is infinitely divisible with an unbounded L\'{e}vy measure ν\nu . The Jorgensen set (i.e., the dispersion parameter space) is then R+\mathbb{R}^{+}, in which case the EDM is characterized by two parameters: θ0\theta _{0} the natural parameter of the associated natural exponential family and the Jorgensen (or dispersion) parameter tt. Denote by EDM(θ0,t)EDM(\theta _{0},t) the corresponding distribution and let YtY_{t} is a r.v. with distribution EDM(θ0,t)EDM(\theta_0,t). Then if ν((x,))logx\nu ((x,\infty ))\sim -\ell \log x around zero we prove that the limiting law F0F_0 of Ytt Y_{t}^{-t} as t0t\rightarrow 0 is of a Pareto type (not depending on θ0 \theta_0) with the form F0(u)=0F_0(u)=0 for u<1u<1 and 1u1-u^{-\ell } for u1 u\geq 1. Such a result enables an approximation of the distribution of Yt Y_{t} for relatively small values of the dispersion parameter of the corresponding EDM. Illustrative examples are provided.Comment: 8 page

    Monte Carlo Methods for Insurance Risk Computation

    Full text link
    In this paper we consider the problem of computing tail probabilities of the distribution of a random sum of positive random variables. We assume that the individual variables follow a reproducible natural exponential family (NEF) distribution, and that the random number has a NEF counting distribution with a cubic variance function. This specific modelling is supported by data of the aggregated claim distribution of an insurance company. Large tail probabilities are important as they reflect the risk of large losses, however, analytic or numerical expressions are not available. We propose several simulation algorithms which are based on an asymptotic analysis of the distribution of the counting variable and on the reproducibility property of the claim distribution. The aggregated sum is simulated efficiently by importancesampling using an exponential cahnge of measure. We conclude by numerical experiments of these algorithms.Comment: 26 pages, 4 figure

    On the small-time behavior of subordinators

    Full text link
    We prove several results on the behavior near t=0 of YttY_t^{-t} for certain (0,)(0,\infty)-valued stochastic processes (Yt)t>0(Y_t)_{t>0}. In particular, we show for L\'{e}vy subordinators that the Pareto law on [1,)[1,\infty) is the only possible weak limit and provide necessary and sufficient conditions for the convergence. More generally, we also consider the weak convergence of tL(Yt)tL(Y_t) as t0t\to0 for a decreasing function LL that is slowly varying at zero. Various examples demonstrating the applicability of the results are presented.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ363 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    New exponential dispersion models for count data -- the ABM and LM classes

    Full text link
    In their fundamental paper on cubic variance functions, Letac and Mora (The Annals of Statistics,1990) presented a systematic, rigorous and comprehensive study of natural exponential families on the real line, their characterization through their variance functions and mean value parameterization. They presented a section that for some reason has been left unnoticed. This section deals with the construction of variance functions associated with natural exponential families of counting distributions on the set of nonnegative integers and allows to find the corresponding generating measures. As exponential dispersion models are based on natural exponential families, we introduce in this paper two new classes of exponential dispersion models based on their results. For these classes, which are associated with simple variance functions, we derive their mean value parameterization and their associated generating measures. We also prove that they have some desirable properties. Both classes are shown to be overdispersed and zero-inflated in ascending order, making them as competitive statistical models for those in use in both, statistical and actuarial modeling. To our best knowledge, the classes of counting distributions we present in this paper, have not been introduced or discussed before in the literature. To show that our classes can serve as competitive statistical models for those in use (e.g., Poisson, Negative binomial), we include a numerical example of real data. In this example, we compare the performance of our classes with relevant competitive models.Comment: 27 pages, 4 tables, 3 figure

    A delineation of new classes of exponential dispersion models supported on the set of nonnegative integers

    Get PDF
    The aim of this paper is to delineate a set of new classes of natural exponential families and their associated exponential dispersion models whose probability distributions are supported on the set of nonnegative integers with positive mass on 0 and 1. The new classes are obtained by considering a specific form of their variance functions. We show that the distributions of all these classes are supported on nonnegative integers, that they are infinitely divisible, and that they are skewed to the right, leptokurtic, over-dispersed, and zero-inflated (relative to the Poisson class). Accordingly, these new classes significantly enrich the set of probability models for modeling zero-inflated and over-dispersed count data. Furthermore, we elaborate on numerical techniques how to compute the distributions of our classes, and apply these to an actual data experiment

    Network analysis of Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) 3.1 items for non-medical use of alcohol, tobacco, cannabis, prescription sedatives, prescription stimulants, and prescription opioids

    Get PDF
    BackgroundAt-risk substance use is a leading cause of preventable morbidity and mortality worldwide. The Alcohol, Smoking and Substance Involvement Screening Test 3.1 (ASSIST) is widely used to screen for such use.ObjectivesUsing network analysis to reframe risky substance use as a web of interacting ASSIST symptoms to provide important suggestions about potential mechanisms underlying risky use.MethodsCross-sectional data on the ASSIST was collected via an online survey from a general population sample of Jewish adults in Israel (N=4,002; 50.4% women). Network analysis was carried out for ASSIST symptoms for non-medical use of alcohol, tobacco, cannabis, prescription sedatives, prescription stimulants, and prescription opioids. First, networks were modeled for each substance, to explore the following research questions: which symptoms were most strongly related? and what are the key symptoms that compose the networks? Second, networks were compared to determine if symptom relationships differed between substances.ResultsBasic similarities were observed across substances, e.g., strongest direct associations between frequency of use and craving, and frequency of substance related problems and role interference. Role interference and craving appeared to play important roles in the networks. Differences were observed between substances in strength of associations between symptoms.ConclusionNetwork structures were similar across substances, suggesting that similar intervention approaches may be appropriate, with substance-specific strategies as warranted. Among those who use substances, addressing the effects of role interference and craving in risky substance use may help reduce substance-related harms and limit progression to full blown disorder

    Cumulant-Based Goodness-of-Fit Tests for the Tweedie, Bar-Lev and Enis Class of Distributions

    Get PDF
    The class of natural exponential families (NEFs) of distributions having power variance functions (NEF-PVFs) is huge (uncountable), with enormous applications in various fields. Based on a characterization property that holds for the cumulants of the members of this class, we developed a novel goodness-of-fit (gof) test for testing whether a given random sample fits fixed members of this class. We derived the asymptotic null distribution of the test statistic and developed an appropriate bootstrap scheme. As the content of the paper is mainly theoretical, we exemplify its applicability to only a few elements of the NEF-PVF class, specifically, the gamma and modified Bessel-type NEFs. A Monte Carlo study was executed for examining the performance of both—the asymptotic test and the bootstrap counterpart—in controlling the type I error rate and evaluating their power performance in the special case of gamma, while real data examples demonstrate the applicability of the gof test to the modified Bessel distribution
    corecore