451 research outputs found

    Exchange rate overvaluation and trade protection - lessons from experience

    Get PDF
    Despite a trend toward more flexible rates, more than half the world's countries maintain fixed or managed exchange rates. In the 1980s and 1990s, developing countries as a group progressively liberalized their trade regimes, but some governments defend their exchange rate in actions that run counter to long-run plans for liberalization. Without discussing the relative merits of fixed and flexible exchange rate systems, the authors note that exchange rate management in many countries has resulted in overvaluation of the real exchange rate. Roughly twenty five percent of the countries for which data are available have overvalued exchange rates, with black market premiums from 10 percent to more than 100 percent. After surveying the literature, the authors present lessons from experience about what has worked (or not) in response to crises involving external shocks and external trade deficits - and why. Trying to defend an overvalued exchange rate with protectionist trade policies is a classic pattern, but experience shows such protection does significantly retard the country's growth, and delay its integration into the world trading community. In fact, and overvalued exchange rate is often the root cause of protection, preventing the country from returning to more liberal trade policies that allow growth and integration into the world community without exchange rate adjustment. Most developing countries have downward price and wage rigidities and, with an external trade deficit, require some form of nominal exchange rate adjustment to restore external equilibrium. The authors present cross-country econometric and case study evidence - citing examples from Argentina, Chile, Ghana, The Republic of Korea, Malaysia, Turkey, Uruguay, and Sub-Saharan Africa (including the CFA zone) - that overvalued exchange rates reduce economic growth. Defending the exchange rate, they show, has nor no medium-term benefits, since falling reserves will eventually force devaluation. Better to have devaluation occur without further debilitating losses in reserves and lost productivity because of import controls. After devaluation the exchange rate will reach a new equilibrium, strongly influenced by government and central bank policies.ICT Policy and Strategies,Environmental Economics&Policies,Fiscal&Monetary Policy,Payment Systems&Infrastructure,Economic Theory&Research,Macroeconomic Management,Environmental Economics&Policies,Achieving Shared Growth,Economic Stabilization,Economic Theory&Research

    Synapses formed by identified retinogeniculate axons during the segregation of eye input.

    Get PDF
    The synaptic organization of identified retinogeniculate axons was studied during the prenatal development of eye-specific layers in the LGN of the cat. During this period, retinogeniculate axons undergo stereotyped morphological changes. Retinogeniculate axons originating from one eye and passing through LGN territory destined to be solely innervated by the other eye (inappropriate territory) initially give rise to many side branches. As the eye-specific layers emerge, these axons elaborate extensive terminal arbors within territory appropriate to their eye of origin and concurrently retract their side branches from inappropriate territory (Sretavan and Shatz, 1986). These transient side branches may therefore represent a morphological substrate for the observed functional convergence of inputs from the two eyes onto common LGN neurons during prenatal development (Shatz and Kirkwood, 1984). This possibility was investigated by examining whether identified axons and their side branches form synapses in inappropriate territory. Three retinogeniculate axons from two fetuses aged embryonic day 53 (E53) and E57 were filled with HRP in an in vitro preparation, prior to being processed for electron microscopy (EM). The HRP-filled axons, originating from the contralateral eye, were first reconstructed at the light microscope level. The portion of axon passing through the center of ipsilaterally innervated layer A1 was then serially sectioned and reconstructed by EM. Two sets of 450 serial EM sections revealed that all three contralateral axons established synaptic contacts in ipsilateral territory. Many of these synapses were made by side branches and a few were even formed by the main axon trunks. Both side branches and trunks formed mainly en passant asymmetrical contacts that were associated with spherical synaptic vesicles and that were apposed to immature dendritic elements and dendritic shafts. For comparison, a portion of the same E53 axon within the future contralateral layer A was also serially sectioned and reconstructed for EM. Within this contralateral zone, the E53 axon formed synaptic contacts similar to those established in the ipsilateral region, except that in the appropriate zone they contained significantly more synaptic vesicles. These results demonstrate that axons from the contralateral eye can establish synapses in territory simultaneously innervated by the ipsilateral eye, both via side branches and by means of contacts along the main axon trunk. Thus, the development of eye-specific layers is accompanied by the formation and subsequent elimination of synapses that almost certainly represent a morphological substrate for the known transient functional convergence of inputs from the two eyes

    Stratifying quotient stacks and moduli stacks

    Full text link
    Recent results in geometric invariant theory (GIT) for non-reductive linear algebraic group actions allow us to stratify quotient stacks of the form [X/H], where X is a projective scheme and H is a linear algebraic group with internally graded unipotent radical acting linearly on X, in such a way that each stratum [S/H] has a geometric quotient S/H. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) such that each stratum has a coarse moduli space.Comment: 25 pages, submitted to the Proceedings of the Abel Symposium 201

    Dendritic growth and remodelling of cat retinal ganglion cells during fetal and postnatal development.

    Get PDF
    We have studied the development of retinal ganglion cell morphology in the cat's visual system from early fetal to postnatal times. In particular, we have examined the contribution of growth and remodeling to the establishment of mature retinal ganglion cell form. Ganglion cells were identified by retrograde labeling with rhodamine latex microspheres deposited in the superior colliculus and lateral geniculate nucleus between embryonic day 34 (E34; birth = E65) and adulthood. To reveal the fine morphological details of retrogradely labeled ganglion cells, 48 hr later Lucifer yellow was injected intracellularly in living retinae that had been dissected and maintained in vitro. Our results show that at E35–37 the majority of ganglion cells are very simple in morphology, with a few dendritic processes that are generally aligned in a radial direction towards or away from the optic disc. During the ensuing 2 week period, there is a progressive growth and elaboration of dendrites. By E50, some ganglion cells resembling the adult alpha, beta, and gamma classes can be identified based on comparisons of the appearance and dimensions of their dendritic trees and somata with neighboring filled cells. However, ganglion cell dendrites and axons at this age express several transient morphological features. The axons of ganglion cells give rise to delicate processes originating from the intraretinal portion of the axon, including side branches, present in about half of the cells, and occasionally bifurcations that give rise to axon collaterals. These transient axonal features are present throughout development, including the neonatal period; no axon collaterals were observed after postnatal day 15, while axonal side branches persisted even at P31 but were gone by adulthood. Ganglion cell dendrites exhibit excessive branches and exuberant somatic and dendritic spines. Quantitative analysis of these processes shows that after E45 dendritic trees increase dramatically in complexity, reaching the peak number of spines and branch points by the first week of postnatal life. The number of dendritic processes then falls abruptly to reach near-adult levels by the end of the first postnatal month. Even though dendritic morphology closely resembles that seen in the adult at this age, ganglion cell bodies and dendrites must continue to grow to reach their adult siz

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family μPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from 1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family μM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures μM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    On-treatment comparison between corrective His bundle pacing and biventricular pacing for cardiac resynchronization: A secondary analysis of His-SYNC

    Get PDF
    Background The His-SYNC pilot trial was the first randomized comparison between His bundle pacing in lieu of a left ventricular lead for cardiac resynchronization therapy (His-CRT) and biventricular pacing (BiV-CRT), but was limited by high rates of crossover. Objective To evaluate the results of the His-SYNC pilot trial utilizing treatment-received (TR) and per-protocol (PP) analyses. Methods The His-SYNC pilot was a multicenter, prospective, single-blinded, randomized, controlled trial comparing His-CRT vs BiV-CRT in patients meeting standard indications for CRT (eg, NYHA II–IV patients with QRS >120 ms). Crossovers were required based on prespecified criteria. The primary endpoints analyzed included improvement in QRS duration, left ventricular ejection fraction (LVEF), and freedom from cardiovascular (CV) hospitalization and mortality. Results Among 41 patients enrolled (aged 64 ± 13 years, 38% female, LVEF 28%, QRS 168 ± 18 ms), 21 were randomized to His-CRT and 20 to BiV-CRT. Crossover occurred in 48% of His-CRT and 26% of BiV-CRT. The most common reason for crossover from His-CRT was inability to correct QRS owing to nonspecific intraventricular conduction delay (n = 5). Patients treated with His-CRT demonstrated greater QRS narrowing compared to BiV (125 ± 22 ms vs 164 ± 25 ms [TR], P < .001;124 ± 19 ms vs 162 ± 24 ms [PP], P < .001). A trend toward higher echocardiographic response was also observed (80 vs 57% [TR], P = .14; 91% vs 54% [PP], P = .078). No significant differences in CV hospitalization or mortality were observed. Conclusions Patients receiving His-CRT on-treatment demonstrated superior electrical resynchronization and a trend toward higher echocardiographic response than BiV-CRT. Larger prospective studies may be justifiable with refinements in patient selection and implantation techniques to minimize crossovers

    Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Get PDF
    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes
    corecore