6 research outputs found

    Identification of a novel homozygous mutation in transmembrane channel like 1 (TMC1) gene, one of the second-tier hearing loss genes after GJB2 in India

    No full text
    Background & objectives: Hearing impairment is a common and heterogeneous sensory disorder in humans. Among about 90 genes, which are known to be associated with hearing impairment, mutations in the GJB2 (gap junction protein beta 2) gene are the most prevalent in individuals with hereditary hearing loss. Contribution of the other deafness-causing genes is relatively poorly understood. Here, we present our findings on two families with transmembrane channel like 1 (TMC1) gene variants of the 47 families with nonsyndromic hearing loss (NSHL) studied. Methods: Forty seven families including 26 consanguineous families with at least two hearing impaired children and one normal hearing child and 21 non-consanguineous families having at least three hearing impaired children and one normal hearing child were enrolled for this study. Genetic linkage studies were carried out in 41 families that were GJB2 (Connexin 26) negative. Seven polymorphic short tandem repeat markers at the DFNB7/11 locus were studied employing fluorescently labelled markers. Results: A novel homozygous missense mutation c.1283C>A (p.Ala428Asp) was identified co-segregating with hearing loss. This change results in substitution of a highly conserved polar alanine to a charged aspartic acid and is predicted to be deleterious. In addition, a previously reported nonsense mutation, p.R34X in TMC1, was found. Interpretation & conclusions: While mutations in TMC1 are not as common a cause of NSHL as those in GJB2, TMC1 should be considered for diagnostic investigations in cases of NSHL in GJB2-negative families

    Do polymorphisms in <i>MDR1</i> and <i>CYP3A5</i> genes influence the risk of cytogenetic relapse in patients with chronic myeloid leukemia on imatinib therapy?

    No full text
    Influence of polymorphisms in the genes coding for imatinib transporters and metabolizing enzymes on cytogenetic relapse in patients with chronic myeloid leukemia (CML) is not known. One hundred and four patients (52 cases with cytogenetic relapse and 52 controls without relapse) with chronic-phase CML on imatinib therapy and have completed 5 years of follow-up were enrolled. The following single nucleotide polymorphisms (SNPs) were genotyped; C1236T, C3435T, G2677T/A in MDR1 gene and A6986G in CYP3A5 gene, using PCR-RFLP method and validated by direct gene sequencing. Imatinib trough levels were measured using LC-MS/MS. Patients with CC genotype for MDR1-C1236T polymorphism were at significantly higher risk for cytogenetic relapse [OR =4.382, 95% CI (1.145, 16.774), p = .022], while those with TT genotype for MDR1-C3435T polymorphism had significantly lower risk of relapse [OR =0.309, 95% CI (0.134, 0.708), p = .005]. Imatinib trough levels were lower in patients with relapse compared to those without relapse (1551.4 &#177; 1324.1 vs. 2154.2 &#177; 1358.3 ng/mL; p = .041). MDR1-C3435T genotype [adjusted-OR: 0.266; 95% CI (0.111, 0.636); p = .003] and trough levels (p = .014) were independent predictors of relapse in multivariate analysis. To conclude, C1236T and C3435T polymorphisms in MDR1 gene and trough levels significantly influence the risk of cytogenetic relapse. MDR1-C3435T genotype might emerge as a potential biomarker to predict the risk of cytogenetic relapse in patients with CML
    corecore