10 research outputs found

    Distributed Saturated Control for a Class of Semilinear PDE Systems: A SOS Approach

    Get PDF
    Producción CientíficaThis paper presents a systematic approach to deal with the saturated control of a class of distributed parameter systems which can be modeled by first-order hyperbolic partial differential equations (PDE). The approach extends (also improves over) the existing fuzzy Takagi-Sugeno (TS) state feedback designs for such systems by applying the concepts of the polynomial sum-of-squares (SOS) techniques. Firstly, a fuzzy-polynomial model via Taylor series is used to model the semilinear hyperbolic PDE system. Secondly, the closed-loop exponential stability of the fuzzy-PDE system is studied through the Lyapunov theory. This allows to derive a design methodology in which a more complex fuzzy state-feedback control is designed in terms of a set of SOS constraints, able to be numerically computed via semidefinite programming. Finally, the proposed approach is tested in simulation with the standard example of a nonisothermal plug-flow reactor (PFR).The research leading to these results has received funding from the European Union and from the Spanish Government (MINECO/FEDER DPI2015-70975-P)

    Load Frequency Control in Microgrids Based on a Stochastic Non-Integer Controller

    No full text

    Dynamics and Model Predictive Control of Current-Fed Dickson Voltage Multiplier : TS Fuzzy Approach

    No full text
    This study presents a new approach to modeling and control the current-fed Dickson voltage multiplier (CF-DVM). The capacitor voltage relation and the input current are obtained. As all switching intervals are considered in detail, a highly accurate dynamic model is obtained, which can be easily extended for a CF-DVM with an arbitrary number of stages. Using the precise extracted model, the Takagi-Sugeno fuzzy model (TSFM) of the CF-DVM is provided, which is an exact equivalent representation of the CF-DVM nonlinear model. Then, a highly accurate and responsive model predictive controller (MPC) is designed based on an obtained TSFM of the CF-DVM to control the output voltage in an optimal and constrained manner. To obtain the control signal, the suggested optimization problem is converted to a quadratic programming (QP)-based problem which has a low online computational burden. Moreover, the performance of the proposed MPC is compared with the PI controller and the linear MPC. Finally, the simulation and experimental results demonstrate the promising merits of the proposed model and control approaches.©2022 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Blockchain-Based Securing of Data Exchange in a Power Transmission System Considering Congestion Management and Social Welfare

    No full text
    Using blockchain technology as one of the new methods to enhance the cyber and physical security of power systems has grown in importance over the past few years. Blockchain can also be used to improve social welfare and provide sustainable energy for consumers. In this article, the effect of distributed generation (DG) resources on the transmission power lines and consequently fixing its conjunction and reaching the optimal goals and policies of this issue to exploit these resources is investigated. In order to evaluate the system security level, a false data injection attack (FDIA) is launched on the information exchanged between independent system operation (ISO) and under-operating agents. The results are analyzed based on the cyber-attack, wherein the loss of network stability as well as economic losses to the operator would be the outcomes. It is demonstrated that cyber-attacks can cause the operation of distributed production resources to not be carried out correctly and the network conjunction will fall to a large extent; with the elimination of social welfare, the main goals and policies of an independent system operator as an upstream entity are not fulfilled. Besides, the contracts between independent system operators with distributed production resources are not properly closed. In order to stop malicious attacks, a secured policy architecture based on blockchain is developed to keep the security of the data exchanged between ISO and under-operating agents. The obtained results of the simulation confirm the effectiveness of using blockchain to enhance the social welfare for power system users. Besides, it is demonstrated that ISO can modify its polices and use the potential and benefits of distributed generation units to increase social welfare and reduce line density by concluding contracts in accordance with the production values given
    corecore