1,322 research outputs found

    Serum levels of matrix metalloproteinases-2 and-9 and their tissue inhibitors in inflammatory neuromuscular disorders

    Get PDF
    We monitored serum levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) before and during intravenously applied immunoglobulin (IVIG) therapy in 33 patients with chronic immune-mediated neuropathies and myopathies and 15 controls. Baseline MMP-2 and TIMP-2 serum levels were lower and MMP-9 and TIMP-1 serum levels higher in all patients compared to age-matched controls. Eight days after IVIG treatment, MMP-2, TIMP-2, and TIMP-1 serum levels increased, while MMP-9 serum levels decreased, indicating tissue repair. After 60 days, MMP-9 levels increased, MMP-2 approached normal levels, while TIMP-1 and TIMP-2 serum levels were below day 8 levels, indicating relapsing tissue damage. Comparing the MMP/TIMP results with the clinical courses, IVIG treatment tended to change MMP/TIMP levels in a way that paralleled clinical improvement and relapse. In sum, during a distinct time period, IVIG therapy seems to be able to modulate VIMP-mediated tissue repair. Copyright (c) 2006 S. Karger AG, Basel

    Mapping the cortical representation of the lumbar paravertebral muscles

    Get PDF
    Objective: The aim of this study was to map the cortical representation of the lumbar spine paravertebral (LP) muscles in healthy subjects. Methods: Transcranial magnetic stimulation (TMS) was employed to map the cortical representations of the LP muscles at two sites. Stimuli were applied to points on a grid representing scalp positions. The amplitude of motor evoked potentials (n = 6) was averaged for each position. Results: The optimal site for evoking responses in the contralateral LP muscles was situated 1 cm anterior and 4 cm lateral to the vertex. Ipsilateral responses were evoked from sites lateral to the optimal site for evoking contralateral responses. Contralateral responses were also obtained from areas anterior to the optimal site. Conclusions: Maps of these muscles can be produced. The results suggest discrete contra- and ipsilateral cortical projections. Anterior sites at which excitation can be evoked may indicate projections arising in the SMA are involved. Significance: This study provides normative data regarding the cortical representation of the paravertebral muscles and provides a technique for evaluating cortical motor plasticity in patients presenting with spinal pathologies

    Understanding brain dysfunction in sepsis

    Get PDF
    Sepsis often is characterized by an acute brain dysfunction, which is associated with increased morbidity and mortality. Its pathophysiology is highly complex, resulting from both inflammatory and noninflammatory processes, which may induce significant alterations in vulnerable areas of the brain. Important mechanisms include excessive microglial activation, impaired cerebral perfusion, blood–brain-barrier dysfunction, and altered neurotransmission. Systemic insults, such as prolonged inflammation, severe hypoxemia, and persistent hyperglycemia also may contribute to aggravate sepsis-induced brain dysfunction or injury. The diagnosis of brain dysfunction in sepsis relies essentially on neurological examination and neurological tests, such as EEG and neuroimaging. A brain MRI should be considered in case of persistent brain dysfunction after control of sepsis and exclusion of major confounding factors. Recent MRI studies suggest that septic shock can be associated with acute cerebrovascular lesions and white matter abnormalities. Currently, the management of brain dysfunction mainly consists of control of sepsis and prevention of all aggravating factors, including metabolic disturbances, drug overdoses, anticholinergic medications, withdrawal syndromes, and Wernicke’s encephalopathy. Modulation of microglial activation, prevention of blood–brain-barrier alterations, and use of antioxidants represent relevant therapeutic targets that may impact significantly on neurologic outcomes. In the future, investigations in patients with sepsis should be undertaken to reduce the duration of brain dysfunction and to study the impact of this reduction on important health outcomes, including functional and cognitive status in survivors

    Evaluation criteria for the process of planning county extension programs

    Get PDF

    Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for Advanced Object Detection

    Full text link
    In the realm of aerial image analysis, object detection plays a pivotal role, with significant implications for areas such as remote sensing, urban planning, and disaster management. This study addresses the inherent challenges in this domain, notably the detection of small objects, managing densely packed elements, and accounting for diverse orientations. We present an in-depth evaluation of an object detection model that integrates the Large Selective Kernel Network (LSKNet)as its backbone with the DiffusionDet head, utilizing the iSAID dataset for empirical analysis. Our approach encompasses the introduction of novel methodologies and extensive ablation studies. These studies critically assess various aspects such as loss functions, box regression techniques, and classification strategies to refine the model's precision in object detection. The paper details the experimental application of the LSKNet backbone in synergy with the DiffusionDet heads, a combination tailored to meet the specific challenges in aerial image object detection. The findings of this research indicate a substantial enhancement in the model's performance, especially in the accuracy-time tradeoff. The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement, outperforming the RCNN model by 4.7% on the same dataset. This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis, paving the way for more accurate and efficient object detection methodologies. The code is publicly available at https://github.com/SashaMatsun/LSKDiffDe

    Antibiotic resistant shiga toxin producing Escherichia coli isolates from milk and milk products

    Get PDF
    Totally  450 milk and milk products (50 each of raw buffalo & cow milk; Kareish, Tallaga and Roquefort cheeses; yoghurt; rayeb; condensed milk and sour cream) samples were randomly purchased from various markets in Kafr El-Sheikh for isolation and identification of STEC. Results showed that 60%, 80%, 30%, 10%, 12%, 20%, 6% and 22% of buffalo & cow milk, Kareish, Roquefort, Tallaga, yoghurt, rayeb and sour cream respectively, contained E.coli, but negative in condensed milk. Fifty suspected isolates were serologically identified using E.coli O157:H7 kits, and confirmed in 69.2%, 53.8%, 60%, 16.7% and 20% isolates of buffalo & cow milk, Kareish, Tallaga and yoghurt, while was negative in Roqufort, rayeb, and sour cream. Using PCR assay, 21 confirmed isolates were examined, 44.4, 71.4, 66.7, 100 and 100% isolates of buffalo & cow milk, Kareish, Tallaga and yoghurt were positive for rfbE gene; while 55.6, 42.8, 66.7, 100 and 100 % isolates of buffalo & cow milk, Kareish, Tallaga and yoghurt were positive for blaTEM, but all isolates were negative for blaCMY2. Consequently, raw milk and most dairy products including fermented products were possible source of E.coli O157:H7food poisoning, so usage of accurate hygienic measures through manufacture and retail of milk products be essential

    Corticosteroids in Generalized Autoimmune Myasthenia Gravis: A Narrative Review

    Get PDF
    No abstract is required for a review article as per instruction

    Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study

    Get PDF
    Background Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis. Methods We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used. Results In postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients. Conclusions Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value

    Delirium in the ICU: time to probe the hard questions

    Get PDF
    Prevalent in critically ill patients, delirium remains poorly understood and difficult to treat. In a cross-sectional study conducted in 12 countries, delirium was identified in close to one third of patients and was independently associated with increased mortality. While such epidemiological accounts represent an important cornerstone for research, scientific efforts are needed to elucidate the causes of delirium and the mechanisms underlying its association with poor outcomes
    corecore