132 research outputs found

    Mass dependence of the hairpin vertex in quenched QCD

    Full text link
    The pseudoscalar ``hairpin'' vertex (i.e. quark-disconnected vertex) plays a key role in quenched chiral perturbation theory. Direct calculations using lattice simulations find that it has a significant dependence on quark mass. I show that this mass dependence can be used to determine the quenched Gasser-Leutwyler constant L5. This complements the calculation of L5 using the mass dependence of the axial decay constant of the pion. In an appendix, I discuss power counting for quenched chiral perturbation theory and describe the particular scheme used in this paper.Comment: 12 pages, 4 figures. Version to appear in Phys. Rev. D. Central result unchanged, but explanation of calculation improved and minor errors corrected. New appendix discusses power counting schemes in quenched chiral perturbation theor

    Partially quenched chiral perturbation theory without Φ0\Phi_0

    Get PDF
    This paper completes the argument that lattice simulations of partially quenched QCD can provide quantitative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to doing this has been the inclusion of Φ0\Phi_0, the partially quenched generalization of the η′\eta', in previous calculations in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate partially quenched chiral perturbation theory without Φ0\Phi_0, and that the resulting theory contains the effective theory for QCD without the η′\eta'. We also show that previous results, obtained including Φ0\Phi_0, can be reinterpreted as applying to the theory without Φ0\Phi_0. We contrast the situation with that in the quenched effective theory, where we explain why it is necessary to include Φ0\Phi_0. We also compare the derivation of chiral perturbation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally, we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries and some plausible assumptions.Comment: 45 pages, no figure

    Unphysical Operators in Partially Quenched QCD

    Full text link
    We point out that the chiral Lagrangian describing pseudo-Goldstone bosons in partially quenched QCD has one more four-derivative operator than that for unquenched QCD with three flavors. The new operator can be chosen to vanish in the unquenched sector of the partially quenched theory. Its contributions begin at next-to-leading order in the chiral expansion. At this order it contributes only to unphysical scattering processes, and we work out some examples. Its contributions to pseudo-Goldstone properties begin at next-to-next-to-leading order, and we determine their form. We also determine all the zero and two derivative operators in the O(p6)O(p^6) partially quenched chiral Lagrangian, finding three more than in unquenched QCD, and use these to give the general form of the analytic next-to-next-to-leading order contributions to the pseudo-Goldstone mass and decay constant. We discuss the general implications of such additional operators for the utility of partially quenched simulationsComment: 13 pages, 11 figures Version 2: Additional footnote and parenthesis in section

    Hadronic Electromagnetic Properties at Finite Lattice Spacing

    Full text link
    Electromagnetic properties of the octet mesons as well as the octet and decuplet baryons are augmented in quenched and partially quenched chiral perturbation theory to include O(a) corrections due to lattice discretization. We present the results for the SU(3) flavor group in the isospin limit as well as the results for SU(2) flavor with non-degenerate quarks. These corrections will be useful for extrapolation of lattice calculations using Wilson valence and sea quarks, as well as calculations using Wilson sea quarks and Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    Impact of the finite volume effects on the chiral behavior of fK and BK

    Full text link
    We discuss the finite volume corrections to fK and BK by using the one-loop chiral perturbation theory in full, quenched, and partially quenched QCD. We show that the finite volume corrections to these quantities dominate the physical (infinite volume) chiral logarithms.Comment: 16 pages, 3 figures [published version

    Baryon Decuplet to Octet Electromagnetic Transitions in Quenched and Partially Quenched Chiral Perturbation Theory

    Full text link
    We calculate baryon decuplet to octet electromagnetic transition form factors in quenched and partially quenched chiral perturbation theory. We work in the isospin limit of SU(3) flavor, up to next-to-leading order in the chiral expansion, and to leading order in the heavy baryon expansion. Our results are necessary for proper extrapolation of lattice calculations of these transitions. We also derive expressions for the case of SU(2) flavor away from the isospin limit.Comment: 16 pages, 3 figures, revtex

    Simulations with different lattice Dirac operators for valence and sea quarks

    Get PDF
    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data.Comment: 17 pages, 1 ps figure (2 clarification paragraphs added

    How good is the quenched approximation of QCD?

    Get PDF
    The quenched approximation for QCD is, at present and in the foreseeable future, unavoidable in lattice calculations with realistic choices of the lattice spacing, volume and quark masses. In this talk, I review an analytic study of the effects of quenching based on chiral perturbation theory. Quenched chiral perturbation theory leads to quantitative insight on the difference between quenched and unquenched QCD, and reveals clearly some of the diseases which are expected to plague quenched QCD. Uses jnl.tex and epsf.tex for figure 3. Figures 1 and 2 not included, sorry. Available as hardcopy on request.Comment: 22 pages, Wash. U. HEP/94-62 (Forgotten set of macros now included, sorry.
    • …
    corecore