78 research outputs found

    Quenched Chiral Perturbation Theory for Heavy-light Mesons

    Get PDF
    We formulate quenched chiral perturbation theory for heavy-light mesons coupled to pions, and calculate the one-loop chiral logarithmic corrections to fBf_B, fBsf_{B_{s}}, BBB_B and BBsB_{B_{s}}. We also calculate these corrections for ``partially quenched'' theories. In both theories, the chiral logarithms diverge in the chiral limit, indicating that (partially) quenched theories should not be used to study this limit. Comparing the chiral logarithms to those in QCD, we estimate the errors caused by (partial) quenching. By forming suitable ratios, we can reduce the uncertainties in our estimates.Comment: 22 pages, revtex format, 5 Postscript figure

    Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions

    Full text link
    We perform a study of matrix elements relevant for the Delta I=1/2 rule and the direct CP-violation parameter epsilon-prime from first principles by computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions, and employ the chiral perturbation theory method for studying K to 2 Pi decays. Having obtained a reasonable statistical accuracy, we observe an enhancement of the Delta I=1/2 amplitude, consistent with experiment within our large systematic errors. Finite volume and quenching effects have been studied and were found small compared to noise. The estimates of epsilon-prime are hindered by large uncertainties associated with operator matching. In this paper we explain the simulation method, present the results and address the systematic uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev. D. Minor errors are corrected, some wording and notation change

    B-->pi and B-->K transitions in standard and quenched chiral perturbation theory

    Get PDF
    We study the effects of chiral logs on the heavy-->light pseudoscalar meson transition form factors by using standard and quenched chiral perturbation theory combined with the static heavy quark limit. The resulting expressions are used to indicate the size of uncertainties due to the use of the quenched approximation in the current lattice studies. They may also be used to assess the size of systematic uncertainties induced by missing chiral log terms in extrapolating toward the physical pion mass. We also provide the coefficient multiplying the quenched chiral log, which may be useful if the quenched lattice studies are performed with very light mesons.Comment: 33 pages, 8 PostScript figures, version to appear in PR

    Bounds on masses of bulk fields in string compactifications

    Full text link
    In string compactification on a manifold X, in addition to the string scale and the normal scales of low-energy particle physics, there is a Kaluza-Klein scale 1/R associated with the size of X. We present an argument that generic string models with low-energy supersymmetry have, after moduli stabilization, bulk fields with masses which are parametrically lighter than 1/R. We discuss the implications of these light states for anomaly mediation and gaugino mediation scenarios.Comment: 15 page

    Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks

    Get PDF
    We present results for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios in the presence of two flavors of light sea quarks (Nf=2N_f=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical uu, dd masses; that is, the central values are "partially quenched." A calculation using "fat-link clover" valence fermions is also discussed but is not included in our final results. We find, for example, fB=190(7)(17+24)(2+11)(0+8)f_B = 190 (7) (^{+24}_{-17}) (^{+11}_{-2}) (^{+8}_{-0}) MeV, fBs/fB=1.16(1)(2)(2)(0+4)f_{B_s}/f_B = 1.16 (1) (2) (2) (^{+4}_{-0}), fDs=241(5)(26+27)(4+9)(0+5)f_{D_s} = 241 (5) (^{+27}_{-26}) (^{+9}_{-4}) (^{+5}_{-0}) MeV, and fB/fDs=0.79(2)(4+5)(3)(0+5)f_{B}/f_{D_s} = 0.79 (2) (^{+5}_{-4}) (3) (^{+5}_{-0}), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched Nf=2N_f=2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,du,d quark masses are not very light and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral logarithms at small quark mass; central values are unchanged but one more systematic error has been added. Sections III E and V D are completely new; some changes for clarity have also been made elsewhere. 82 pages; 32 figure

    Stability Walls in Heterotic Theories

    Full text link
    We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilization.Comment: 37 pages, 4 figure

    The Taming of Closed Time-like Curves

    Full text link
    We consider a R1,d/Z2R^{1,d}/Z_2 orbifold, where Z2Z_2 acts by time and space reversal, also known as the embedding space of the elliptic de Sitter space. The background has two potentially dangerous problems: time-nonorientability and the existence of closed time-like curves. We first show that closed causal curves disappear after a proper definition of the time function. We then consider the one-loop vacuum expectation value of the stress tensor. A naive QFT analysis yields a divergent result. We then analyze the stress tensor in bosonic string theory, and find the same result as if the target space would be just the Minkowski space R1,dR^{1,d}, suggesting a zero result for the superstring. This leads us to propose a proper reformulation of QFT, and recalculate the stress tensor. We find almost the same result as in Minkowski space, except for a potential divergence at the initial time slice of the orbifold, analogous to a spacelike Big Bang singularity. Finally, we argue that it is possible to define local S-matrices, even if the spacetime is globally time-nonorientable.Comment: 37 pages, LaTeX2e, uses amssymb, amsmath and epsf macros, 8 eps and 3 ps figures; (v2): Two additional comments + one reference added; (v3): corrections in discussion of CTCs + some clarification

    D-branes on general N=1 backgrounds: superpotentials and D-terms

    Full text link
    We study the dynamics governing space-time filling D-branes on Type II flux backgrounds preserving four-dimensional N=1 supersymmetry. The four-dimensional superpotentials and D-terms are derived. The analysis is kept on completely general grounds thanks to the use of recently proposed generalized calibrations, which also allow one to show the direct link of the superpotentials and D-terms with BPS domain walls and cosmic strings respectively. In particular, our D-brane setting reproduces the tension of D-term strings found from purely four-dimensional analysis. The holomorphicity of the superpotentials is also studied and a moment map associated to the D-terms is proposed. Among different examples, we discuss an application to the study of D7-branes on SU(3)-structure backgrounds, which reproduces and generalizes some previous results.Comment: 50 pages; v2: table of contents, some clarifications and references added; v3: typos corrected and references adde

    An Upgraded Analysis of ϵ/ϵ\epsilon\prime/\epsilon at the Next-to-Leading Order

    Full text link
    An upgraded analysis of \ep, xdx_d and \epp/\ep, using the latest determinations of the relevant experimental and theoretical parameters, is presented. Using the recent determination of the top quark mass, mt=(174±17)m_t=(174 \pm 17) GeV, our best estimate is \epp/\ep= 3.1 \pm 2.5 , which lies in the range given by E731. We describe our determination of \epp/\ep and make a comparison with other similar studies. A detailed discussion of the matching of the full theory to the effective Hamiltonian, written in terms of lattice operators, is also given.Comment: LaTeX, 45 pages, 6 postscript figure
    corecore