6,940 research outputs found

    Cork-resin ablative insulation for complex surfaces and method for applying the same

    Get PDF
    A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material

    Aluminium or copper substrate panel for selective absorption of solar energy

    Get PDF
    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate

    Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    Get PDF
    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed

    Partially quenched chiral perturbation theory without Φ0\Phi_0

    Get PDF
    This paper completes the argument that lattice simulations of partially quenched QCD can provide quantitative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to doing this has been the inclusion of Φ0\Phi_0, the partially quenched generalization of the η\eta', in previous calculations in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate partially quenched chiral perturbation theory without Φ0\Phi_0, and that the resulting theory contains the effective theory for QCD without the η\eta'. We also show that previous results, obtained including Φ0\Phi_0, can be reinterpreted as applying to the theory without Φ0\Phi_0. We contrast the situation with that in the quenched effective theory, where we explain why it is necessary to include Φ0\Phi_0. We also compare the derivation of chiral perturbation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally, we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries and some plausible assumptions.Comment: 45 pages, no figure

    Simulations with different lattice Dirac operators for valence and sea quarks

    Get PDF
    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data.Comment: 17 pages, 1 ps figure (2 clarification paragraphs added

    Sprayable low density ablator and application process

    Get PDF
    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent

    Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe

    Get PDF
    I develop a renormalization-group blocking framework for lattice QCD with staggered fermions. Under plausible, and testable, assumptions, I then argue that the fourth-root recipe used in numerical simulations is valid in the continuum limit. The taste-symmetry violating terms, which give rise to non-local effects in the fourth-root theory when the lattice spacing is non-zero, vanish in the continuum limit. A key role is played by reweighted theories that are local and renormalizable on the one hand, and that approximate the fourth-root theory better and better as the continuum limit is approached on the other hand.Comment: Minor corrections. Revtex, 58 page

    Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory

    Get PDF
    I present one-loop level calculations of the Isgur-Wise functions for B -> D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma in partially quenched heavy quark chiral perturbation theory. Such expressions are required in order to extrapolate from the light quark masses used in lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig

    Chiral corrections to the axial charges of the octet baryons from quenched QCD

    Get PDF
    We calculate one-loop correction to the axial charges of the octet baryons using quenched chiral perturbation theory, in order to understand chiral behavior of the axial charges in quenched approximation to quantum chromodynamics (QCD). In contrast to regular behavior of the full QCD chiral perturbation theory result, c0+cl2mπ2lnmπ2+c_0+c_{l2}m_\pi^2\,\ln{m_\pi^2}+\cdots, we find that the quenched chiral perturbation theory result, c0Q+(cl0Q+cl2Qmπ2)lnmπ2+c2Qmπ2+c_0^Q+(c_{l0}^Q+c_{l2}^Qm_\pi^2)\ln{m_\pi^2}+c_2^Q m_\pi^2+\cdots, is singular in the chiral limit.Comment: standard LaTeX, 16 pages, 4 epsf figure

    Impact of the finite volume effects on the chiral behavior of fK and BK

    Full text link
    We discuss the finite volume corrections to fK and BK by using the one-loop chiral perturbation theory in full, quenched, and partially quenched QCD. We show that the finite volume corrections to these quantities dominate the physical (infinite volume) chiral logarithms.Comment: 16 pages, 3 figures [published version
    corecore