1,642 research outputs found
Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage
Background Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Findings Using [11C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. Conclusions These findings support a link between axonal damage and persistent inflammation after brain injury
Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori comprise two geographically widespread types, m1 and m2, and have evolved through limited recombination
Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori vary, particularly in their mid region (which may be type m1 or m2) and their signal peptide coding region (type s1 or s2). We investigated nucleotide diversity among vacA alleles in strains from several locales in Asia, South America, and the USA. Phylogenetic analysis of vacA mid region sequences from 18 strains validated the division into two main groups (m1 and m2) and showed further significant divisions within these groups. Informative site analysis demonstrated one example of recombination between m1 and m2 alleles, and several examples of recombination among alleles within these groups. Recombination was not sufficiently extensive to destroy phylogenetic structure entirely. Synonymous nucleotide substitution rates were markedly different between regions of vacA, suggesting different evolutionary divergence times and implying horizontal transfer of genetic elements within vacA. Non-synonymous/synonymous rate ratios were greater between m1 and m2 sequences than among m1 sequences, consistent with m1 and m2 alleles encoding functions fitting strains for slightly different ecological niches
Single-stranded genomic architecture constrains optimal codon usage
Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts' genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts' codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes
General Rules for Optimal Codon Choice
Different synonymous codons are favored by natural selection for translation efficiency and accuracy in different organisms. The rules governing the identities of favored codons in different organisms remain obscure. In fact, it is not known whether such rules exist or whether favored codons are chosen randomly in evolution in a process akin to a series of frozen accidents. Here, we study this question by identifying for the first time the favored codons in 675 bacteria, 52 archea, and 10 fungi. We use a number of tests to show that the identified codons are indeed likely to be favored and find that across all studied organisms the identity of favored codons tracks the GC content of the genomes. Once the effect of the genomic GC content on selectively favored codon choice is taken into account, additional universal amino acid specific rules governing the identity of favored codons become apparent. Our results provide for the first time a clear set of rules governing the evolution of selectively favored codon usage. Based on these results, we describe a putative scenario for how evolutionary shifts in the identity of selectively favored codons can occur without even temporary weakening of natural selection for codon bias
The Malagarasi River Does Not Form an Absolute Barrier to Chimpanzee Movement in Western Tanzania
The Malagarasi River has long been thought to be a barrier to chimpanzee movements in western Tanzania. This potential geographic boundary could affect chimpanzee ranging behavior, population connectivity and pathogen transmission, and thus has implications for conservation strategies and government policy. Indeed, based on mitochondrial DNA sequence comparisons it was recently argued that chimpanzees from communities to the north and to the south of the Malagarasi are surprisingly distantly related, suggesting that the river prevents gene flow. To investigate this, we conducted a survey along the Malagarasi River. We found a ford comprised of rocks that researchers could cross on foot. On a trail leading to this ford, we collected 13 fresh fecal samples containing chimpanzee DNA, two of which tested positive for SIVcpz. We also found chimpanzee feces within the riverbed. Taken together, this evidence suggests that the Malagarasi River is not an absolute barrier to chimpanzee movements and communities from the areas to the north and south should be considered a single population. These results have important consequences for our understanding of gene flow, disease dynamics and conservation management
The role of defensive information processing in population-based colorectal cancer screening uptake
BACKGROUND: Internationally, colorectal cancer screening participation remains low despite the availability of home-based testing and numerous interventions to increase uptake. To be effective, interventions should be based on an understanding of what influences individuals’ decisions about screening participation. This study investigates the association of defensive information processing (DIP) with fecal immunochemical test (FIT)–based colorectal cancer screening uptake. METHODS: Regression modeling of data from a cross-sectional survey within a population-based FIT screening program was conducted. The survey included the seven subdomains of the McQueen DIP measure. The primary outcome variable was the uptake status (screening user or nonuser). Multivariable logistic regression was used to estimate the odds ratio (OR) for screening nonuse by DIP (sub)domain score, with adjustments made for sociodemographic and behavioral factors associated with uptake. RESULTS: Higher scores (equating to greater defensiveness) on all DIP domains were significantly associated with lower uptake in the model adjusted for sociodemographic factors. In the model with additional adjustments for behavioral factors, the suppression subdomains of “deny immediacy to be tested” (OR, 0.53; 95% confidence interval [CI], 0.43–0.65; p < .001) and “self-exemption” (OR, 0.80; 95% CI, 0.68–0.96; p < .001) independently predicted nonuse of FIT-based screening. CONCLUSIONS: This is the first study outside the United States that has identified DIP as a barrier to colorectal cancer screening uptake, and it is the first focused specifically on FIT-based screening. The findings suggest that two suppression barriers, namely denying the immediacy to be tested and self-exempting oneself from screening, may be promising targets for future interventions to improve uptake
Does codon bias have an evolutionary origin?
<p>Abstract</p> <p>Background</p> <p>There is a 3-fold redundancy in the Genetic Code; most amino acids are encoded by more than one codon. These synonymous codons are not used equally; there is a Codon Usage Bias (CUB). This article will provide novel information about the origin and evolution of this bias.</p> <p>Results</p> <p>Codon Usage Bias (CUB, defined here as deviation from equal usage of synonymous codons) was studied in 113 species. The average CUB was 29.3 ± 1.1% (S.E.M, n = 113) of the theoretical maximum and declined progressively with evolution and increasing genome complexity. A Pan-Genomic Codon Usage Frequency (CUF) Table was constructed to describe genome-wide relationships among codons. Significant correlations were found between the number of synonymous codons and (i) the frequency of the respective amino acids (ii) the size of CUB. Numerous, statistically highly significant, internal correlations were found among codons and the nucleic acids they comprise. These strong correlations made it possible to predict missing synonymous codons (wobble bases) reliably from the remaining codons or codon residues.</p> <p>Conclusion</p> <p>The results put the concept of "codon bias" into a novel perspective. The internal connectivity of codons indicates that all synonymous codons might be integrated parts of the Genetic Code with equal importance in maintaining its functional integrity.</p
Design, Construction and Cloning of Truncated ORF2 and tPAsp-PADRE-Truncated ORF2 Gene Cassette From Hepatitis E Virus in the pVAX1 Expression Vector
Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal.
Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus.
Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells.
Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method.
Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations
Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions
BACKGROUND: In many microbial genomes, a strong preference for a small number of codons can be observed in genes whose products are needed by the cell in large quantities. This codon usage bias (CUB) improves translational accuracy and speed and is one of several factors optimizing cell growth. Whereas CUB and the overrepresentation of individual proteins have been studied in detail, it is still unclear which high-level metabolic categories are subject to translational optimization in different habitats. RESULTS: In a systematic study of 388 microbial species, we have identified for each genome a specific subset of genes characterized by a marked CUB, which we named the effectome. As expected, gene products related to protein synthesis are abundant in both archaeal and bacterial effectomes. In addition, enzymes contributing to energy production and gene products involved in protein folding and stabilization are overrepresented. The comparison of genomes from eleven habitats shows that the environment has only a minor effect on the composition of the effectomes. As a paradigmatic example, we detailed the effectome content of 37 bacterial genomes that are most likely exposed to strongest selective pressure towards translational optimization. These effectomes accommodate a broad range of protein functions like enzymes related to glycolysis/gluconeogenesis and the TCA cycle, ATP synthases, aminoacyl-tRNA synthetases, chaperones, proteases that degrade misfolded proteins, protectants against oxidative damage, as well as cold shock and outer membrane proteins. CONCLUSIONS: We made clear that effectomes consist of specific subsets of the proteome being involved in several cellular functions. As expected, some functions are related to cell growth and affect speed and quality of protein synthesis. Additionally, the effectomes contain enzymes of central metabolic pathways and cellular functions sustaining microbial life under stress situations. These findings indicate that cell growth is an important but not the only factor modulating translational accuracy and speed by means of CUB
Recommended from our members
Stops making sense: translational trade-offs and stop codon reassignment
Background
Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature.
Results
In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences.
Conclusions
We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants
- …