70 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    De novo transcriptome assembly of cold stressed clones of the hexaploid Sequoia sempervirens (D. Don) Endl.

    No full text
    Coast redwood is a very important endemic conifer timber species in Southern Oregon and Northern California in the USA. Due to its good wood properties and fast growth rate it can be considered as a prospective timber species also in other countries with similar or changing toward similar climatic conditions due to global climate warming, such as Germany. In general, it is frost sensitive and suffers from freezing temperatures. To study genetic mechanisms of frost resistance in this species and to select the most frost tolerant trees we tested 17 clones in climate control chamber experiments and generated two de novo assemblies of the coast redwood transcriptome from a pooled RNA sample using Trinity and CLC Genomic Workbench software, respectively. The hexaploid nature of the coast redwood genome makes it very challenging to successfully assemble and annotate the coast redwood transcriptome. The de novo transcriptome assembly generated by Trinity and CLC considering only reads with a minimum length of 180bp and contigs no less than 200bp long resulted in 634,772 and 788,464 unigenes (unique contigs), respectively

    De novo transcriptome assembly of cold stressed clones of the hexaploid Sequoia sempervirens (D. Don) Endl.

    Get PDF
    Coast redwood is a very important endemic conifer timber species in Southern Oregon and Northern California in the USA. Due to its good wood properties and fast growth rate it can be considered as a prospective timber species also in other countries with similar or changing toward similar climatic conditions due to global climate warming, such as Germany. In general, it is frost sensitive and suffers from freezing temperatures. To study genetic mechanisms of frost resistance in this species and to select the most frost tolerant trees we tested 17 clones in climate control chamber experiments and generated two de novo assemblies of the coast redwood transcriptome from a pooled RNA sample using Trinity and CLC Genomic Workbench software, respectively. The hexaploid nature of the coast redwood genome makes it very challenging to successfully assemble and annotate the coast redwood transcriptome. The de novo transcriptome assembly generated by Trinity and CLC considering only reads with a minimum length of 180 bp and contigs no less than 200 bp long resulted in 634,772 and 788,464 unigenes (unique contigs), respectively. © 2020, The Author(s)

    Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae

    No full text
    The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in construction, greatly contributed to the development of genomic resources for the larch genus. Here, we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA. In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-annotated proteins and 78% having at least one GO term assignment. The current state of the genome annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene abundance in different functional categories. Comparative analysis of functional gene categories across different angiosperm and gymnosperm species finds that the Siberian larch genome has an overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and annotations of the conifer genomes are at a point of development where they now represent a valuable source for further genomic, genetic and population studies

    Intra- and Inter-cellular Modeling of Dynamic Interaction between Zika Virus and Its Naturally Occurring Defective Viral Genomes

    No full text
    Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation. IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses

    Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb)

    Get PDF
    Abstract Background De novo assembling of large genomes, such as in conifers (~ 12–30 Gbp), which also consist of ~ 80% of repetitive DNA, is a very complex and computationally intense endeavor. One of the main problems in assembling such genomes lays in computing limitations of nucleotide sequence assembly programs (DNA assemblers). As a rule, modern assemblers are usually designed to assemble genomes with a length not exceeding the length of the human genome (3.24 Gbp). Most assemblers cannot handle the amount of input sequence data required to provide sufficient coverage needed for a high-quality assembly. Results An original stepwise method of de novo assembly by parts (sets), which allows to bypass the limitations of modern assemblers associated with a huge amount of data being processed, is presented in this paper. The results of numerical assembling experiments conducted using the model plant Arabidopsis thaliana, Prunus persica (peach) and four most popular assemblers, ABySS, SOAPdenovo, SPAdes, and CLC Assembly Cell, showed the validity and effectiveness of the proposed stepwise assembling method. Conclusion Using the new stepwise de novo assembling method presented in the paper, the genome of Siberian larch, Larix sibirica Ledeb. (12.34 Gbp) was completely assembled de novo by the CLC Assembly Cell assembler. It is the first genome assembly for larch species in addition to only five other conifer genomes sequenced and assembled for Picea abies, Picea glauca, Pinus taeda, Pinus lambertiana, and Pseudotsuga menziesii var. menziesii

    Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome

    No full text
    Background: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from similar to 222 Kbp inBrassica napusto 11.3 Mbp inSilene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibiricaLedeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. Results: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. Conclusions: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plantSilene conica(11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence

    Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome : научное издание

    No full text
    Статья из журнала. Научное издание.Background: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from similar to 222 Kbp inBrassica napusto 11.3 Mbp inSilene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibiricaLedeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. Results: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. Conclusions: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plantSilene conica(11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence
    corecore