230 research outputs found

    Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry

    Full text link
    Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. The corresponding spontaneous magnetization is temperature independent near the critical temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and thin films we expect a temperature dependent spontaneous magnetization with a paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wavevector q and finite frequency w, however at finite q,w it has an unusual structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press

    Control of spin injection by direct current in lateral spin valves

    Full text link
    The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high current densities are injected (∼\sim80--105 K for 1--2×107\times10^{7}A cm−2^{-2}), strongly affecting the spin accumulation.Comment: 6 pages, 5 figure

    Planar Superconductor-Normal-Superconductor Josephson Junctions in MgB2

    Full text link
    Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and has a well-developed s-wave energy gap (∆), implying that electronic devices based on MgB2 could operate close to 30K. Although a number of groups have reported the formation of thin films by post-reaction of precursors, heterostructure growth is likely to require considerable technological development, making single-layer device structures of most immediate interest. MgB2 is unlike the cuprate superconductors in that grain boundaries do not form good Josephson junctions, and although a SQUID based on MgB2 nanobridges has been fabricated, the nanobridges themselves do not show junction-like properties. Here we report the successful creation of planar MgB2 junctions by localised ion damage in thin films. The critical current (IC) of these devices is strongly modulated by applied microwave radiation and magnetic field. The product of the critical current and normal state resistance (ICRN) is remarkably high, implying a potential for very high frequency applications.Comment: 7 pages including 4 figure

    Correlation of tunneling spectra with surface nano-morphology and doping in thin YBa2Cu3O7-delta films

    Full text link
    Tunneling spectra measured on thin epitaxial YBa2Cu3O7-delta films are found to exhibit strong spatial variations, showing U and V-shaped gaps as well as zero bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no transition to a state of broken time reversal symmetry in the underdoped regimeComment: accepted to ep

    Temperature and junction-type dependency of Andreev reflection in MgB2

    Full text link
    We studied the voltage and temperature dependency of the dynamic conductance of normal metal-MgB2 junctions obtained either with the point-contact technique (with Au and Pt tips) or by making Ag-paint spots on the surface of high-quality single-crystal-like MgB2 samples. The fit of the conductance curves with the generalized BTK model gives evidence of pure s-wave gap symmetry. The temperature dependency of the gap, measured in Ag-paint junctions (dirty limit), follows the standard BCS curve with 2Delta/kTc = 3.3. In out-of-plane, high-pressure point contacts we obtained almost ideal Andreev reflection characteristics showing a single small s-wave gap Delta = 2.6 +/- 0.2 (clean limit). These results support the two-gap model of superconductivity, the presence of a modified layer at the surface of the crystals and an important and non-conventional role of the impurities in MgB2.Comment: 5 pages, 4 eps figures, SNS 2001 conferenc

    Two-gap superconductivity in MgB2_{2}: clean or dirty?

    Get PDF
    A large number of experimental facts and theoretical arguments favor a two-gap model for superconductivity in MgB2_{2}. However, this model predicts strong suppression of the critical temperature by interband impurity scattering and, presumably, a strong correlation between the critical temperature and the residual resistivity. No such correlation has been observed. We argue that this fact can be understood if the band disparity of the electronic structure is taken into account, not only in the superconducting state, but also in normal transport
    • …
    corecore