30 research outputs found

    Hydromulches suppress weeds and maintain fruit production in organically managed strawberry systems

    Get PDF
    Polyethylene (PE) mulches are widely used in strawberry (Fragaria×ananassa Duch) production for weed suppression and crop growth optimization. However, PE mulches are not biodegradable and contribute to plastic pollution. Our objective was to develop and test biodegradable liquid-applied ‘hydromulches’ (HMs) as a sustainable alternative to PE mulch. HM weed suppression efficacy, strawberry plant growth, and yield were evaluated. HM formulations consisted of shredded newsprint paper (NP), water, and a tackifier, either guar gum (GG) or psyllium husk (PH) added at 2 or 6%. Experiments were conducted at two environmentally distinct locations: northwest Washington (WA) and eastern North Dakota (ND). Five HM formulations were compared to black PE mulch within a randomized complete block design with four replications. PE mulch suppressed weeds completely at peak weed emergence and peak weed vegetative growth at both locations. Formulations of HM containing GG provided superior weed suppression compared to other HM formulations at peak weed emergence (4–6 vs. 18–22 plants m-2, respectively). At peak vegetative growth, HM formulations containing GG had the lowest weed density compared to other HMs in ND (1 vs. 9–12 plants m-2), whereas these differences were not observed in WA. Total weed biomass did not differ among HMs across both locations. GG HM formulations deteriorated similarly to PE mulch (3–5% vs. 2%, respectively) in ND, whereas other HMs deteriorated more substantially. In WA, all HMs deteriorated more than PE mulch (6–12% vs. 1%, respectively). Fruit yield did not differ among treatments in weedy and weed-free subplots (194–254 g plant-1) in WA. In ND, yield was greater in all HM treatments compared to PE mulch in both weedy and weed-free subplots. Across both locations, strawberry canopy cover was greater in PE mulch (56.1% canopy cover) compared to 2%GG and NP (42.4 and 39.8% canopy cover). Strawberry plant biomass was similar among mulch treatments. However, strawberry leaf and crown biomass were slightly lower in 2%PH compared to other mulch treatments. Results demonstrate HMs with GG tackifier are a promising alternative to PE mulch in organic strawberry systems based on ability to suppress weeds, enhance strawberry growth, and maintain yield

    Impact of Biochar on Earthworm Populations: A Review

    Get PDF
    Despite the overwhelming importance of earthworm activity in the soil system, there are a limited number of studies that have examined the impact resulting from biochar addition to soil. Biochar is part of the black carbon continuum of chemo-thermal converted biomass. This review summarizes existing data pertaining to earthworms where biochar and other black carbon substances, including slash-and-burn charcoals and wood ash, have been applied. After analyzing existing studies on black carbon, we identified that these additions have a range from short-term negative impacts to long-term null effects on earthworm population density and total biomass. Documented cases of mortality were found with certain biochar-soil combinations; the cause is not fully understood, but hypothesized to be related to pH, whether the black carbon is premoistened, affects feeding behaviors, or other unknown factors. With wood ashes, negative impacts were overcome with addition of other carbon substrates. Given that field data is limited, soils amended with biochar did not appear to cause significant long-term impacts. However, this may indicate that the magnitude of short-term negative impacts on earthworm populations can be reduced with time

    Soil Management Implications of Producing Biofuel Feedstock

    Get PDF
    The use of plant biomass for energy has existed since humans mastered the use of fire, although utilization beyond the open fire has evolved. The concept of using recent biomass as a major energy feedstock is being revisited, driven by high consumer demand (growing population), declining domestic oil supplies, increasing cost of fossil fuels, and a desire to curb the emission of greenhouse gases (Johnson et al., 2007b). In general terms, agriculture and forestry are the economic sectors commercially producing a wide array of bioenergy feedstocks (e.g., grains, herbaceous annuals, herbaceous perennials, and woody perennials). For this review, biomass feedstock is any nongrain, plant-derived feedstock. These commodities can serve as feedstock for cellulosic ethanol or other thermochemical platforms such as gasification or pyrolysis. The type of bioenergy feedstock produced and the desired energy product can alter the management implications, which likely will vary by region. It is also likely that a given farm operation may produce multiple feedstocks, including corn and soybean grain, perennial grasses, and crop residues. The potential risks and benefits of growing and using feedstocks vary considerably (Johnson et al., 2007b). The challenge of establishing a perennial biomass system depends on prior management. Conversion of highly diverse grassland systems to low-diversity or monoculture perennial systems could reduce the environmental benefits of these lands. Conversely, converting from high-input, annual crop species to perennial species could reduce input requirements (fertilizer, fuel, pesticides) and reduce erosion risks, and thus have positive environmental impacts (Mann and Tolbert, 2000). Agronomic, environmental, and economic issues need to be addressed for the wide range of feedstocks and feedstock combinations to assure sustainability

    Management Drives Differences in Nutrient Dynamics in Conventional and Organic Four-Year Crop Rotation Systems

    No full text
    Application of exogenous N fertilizers provides agronomic benefits but carries environmental liabilities. Managing benefits and liabilities of N-based fertilizers in conventional (CNV) and organic (ORG) cropping systems might be improved with better knowledge of nutrient dynamics, the generation of intrinsic N, and maintenance of soil organic matter. This study evaluated mineral N dynamics, yields, residue inputs, and change in soil organic C (SOC) and total N (TN) in strip-tilled, four-year crop rotations [corn (Zea mays L.)-soybean (Glycine max [L.] Merr.)-wheat under-seeded with alfalfa (Triticum aestivum L./Medicago sativa L.)-alfalfa] over eight years of production under CNV management using mineral-N (NO3NH4) and chemical pesticides or ORG management using organic-N (animal manure) and no chemical treatments. In ORG, N availability increased over time, but did not benefit ORG yields due to poor control of insects and weeds. Corn, soybean, and wheat grain yields were 1.9 to 2.7 times greater in CNV. In general, SOC was lost in CNV but did not change in ORG. Cumulative yield N removals exceeded cumulative fertilizer-N inputs by an average of 78% in CNV and 64% in ORG. These results indicated ORG management supported N availability by generating intrinsic N

    Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum).

    No full text
    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. Seeds were sown in field plots over three years in western Minnesota in spring (early-sown) or early summer (late-sown), and flower abundance, pollinator visitation, and seed yields were studied. Initial flowering commenced 41 to 55 d after sowing, and anthesis duration (first flowering to harvest) was 34 to 70 d. Late sowing dates delayed anthesis, but increased the intensity of visitation by pollinators. Cumulative flower densities ranged from 1 to 4.5 billion ha-1. Flowers attracted numerous honey bees (Apis mellifera L.), as many as 35 per minute of observation, which represented about 50% of all insect visitors. Early-sown echium produced seed yields up to 750 kg ha-1, which were 2-29 times higher than those of late-sown echium. Early sowing of echium in Minnesota provides abundant floral resources for pollinators for up to two months and simultaneously produces seed yields whose profits rival those of corn (Zea mays L.)

    Pine Chip and Poultry Litter Derived Biochars Affect C and N Dynamics in Two Georgia, USA, Ultisols

    No full text
    Some biochars produced by pyrolysis of biomass have the potential to sequester C and enhance nutrient supplies in agricultural soils. A 28-day lab incubation was used to assess the potential effects of biochars derived from pine chips (PC) or poultry litter (PL) applied at five application rates (0, 22.5, 45.0, 67.5, and 90 Mg ha−1 equivalent). Biochars were applied to two acidic Ultisols, a Cecil sandy loam and a Tifton loamy sand, found in Georgia, USA. Cumulative basal soil respiration was measured over the 28-day incubation. Other soil properties measured before and after incubation were soil pH, total soil organic carbon (SOC), total soil N, soluble organic C (OC), soil mineral nitrogen (NH4+-N and NO3−-N), and microbial biomass C (MBC). Before incubation, addition of both PC and PL biochars increased soil pH, total SOC, and C:N ratio in both soils. Addition of the PL biochar increased total soil N, soluble OC, and NO3−-N in both soils, MBC in Tifton soil, and NH4+-N in Cecil soil. Addition of the PC biochar decreased NO3−-N in Cecil soil but increased it in Tifton soil. After the 28-day incubation, averaged across soils, pH increased in the 22.5 Mg ha−1 PC and 22.5 and 67.5 Mg ha−1 PL treatments, total SOC declined in the 45 and 67.5 Mg ha−1 PC treatments, and the C:N increased in soil controls and decreased in the 67.5 Mg ha−1 PC treatment. In Cecil soil, the MBC declined in PL treatments except at 90 Mg ha−1, and NH4+-N declined in the 90 Mg ha−1 PC treatments. In Tifton soil, MBC increased in the 45 Mg ha−1 PL treatment, and NH4+-N increased in all but the 22.5 Mg ha−1 PL treatments. Total N and NO3−-N did not change with incubation. Basal respiration was not affected by biochar, thought it was generally greater in Cecil than Tifton soil. Net SOC loss and the initial increase in soluble OC and MBC indicated potential C priming from adding both biochars. Increased NH4+-N with time in Tifton PL treatments indicated potential N priming. In Cecil soil, the PC biochar may have immobilized NH4+-N, but PL biochar likely supplied it. In Tifton soil, PC biochar appeared to be generally inert, but PL biochar supplied soluble OC and NH4+-N, although it might have inhibited nitrification

    Milk Production, Body Weight, Body Condition Score, Activity, and Rumination of Organic Dairy Cattle Grazing Two Different Pasture Systems Incorporating Cool- and Warm-Season Forages

    No full text
    Organic dairy cows were used to evaluate the effect of two organic pasture production systems (temperate grass species and warm-season annual grasses and cool-season annuals compared with temperate grasses only) across two grazing seasons (May to October of 2014 and 2015) on milk production, milk components (fat, protein, milk urea nitrogen (MUN), somatic cell score (SCS)), body weight, body condition score (BCS), and activity and rumination (min/day). Cows were assigned to two pasture systems across the grazing season at an organic research dairy in Morris, Minnesota. Pasture System 1 was cool-season perennials (CSP) and Pasture System 2 was a combination of System 1 and warm-season grasses and cool-season annuals. System 1 and System 2 cows had similar milk production (14.7 and 14.8 kg d−1), fat percentage (3.92% vs. 3.80%), protein percentage (3.21% vs. 3.17%), MUN (12.5 and 11.5 mg dL−1), and SCS (4.05 and 4.07), respectively. Cows in System 1 had greater daily rumination (530 min/day) compared to cows in System 2 (470 min/day). In summary, warm-season annual grasses may be incorporated into grazing systems for pastured dairy cattle

    Flower coverage time (%t), pollinator visitation time (pvt), pollinator visitiation intensity (pvt %t<sup>−1</sup>), sum of flowers produced per hectare (∑f ha<sup>−1</sup>), sucrose per hectare per year (s h<sup>−1</sup> y<sup>−1</sup>), and ratio of pollinator visitation time to flower coverage time (pvt %t<sup>−1</sup>).

    No full text
    <p>Flower coverage time (%t), pollinator visitation time (pvt), pollinator visitiation intensity (pvt %t<sup>−1</sup>), sum of flowers produced per hectare (∑f ha<sup>−1</sup>), sucrose per hectare per year (s h<sup>−1</sup> y<sup>−1</sup>), and ratio of pollinator visitation time to flower coverage time (pvt %t<sup>−1</sup>).</p
    corecore