8 research outputs found

    Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat

    No full text
    In vivo recombinant adeno-associated viral vector (rAAV)-mediated transduction of various tissues including brain has been characterized by slow onset and gradual increase in gene expression before reaching stable long-term protein levels. The early time course of transgene expression has not been quantified using newly available rAAV capsid serotypes. In this experiment, the onset of expression of green fluorescent protein (GFP) after intrastriatal injection of rAAV2-based pseudotyped vectors (rAAV1, rAAV5, and rAAV8 capsids) was quantified. Native GFP fluorescence displayed a delayed onset of expression of at least 7 days for all the pseudotyped rAAV vectors. However, GFP immunohistochemical staining revealed significant transgene expression by 4 days after transduction for all serotypes and stable GFP+ neuronal populations mediated by all serotypes within 14 days post transduction at the latest. rAAV2/1 and rAAV2/2 displayed no time-dependent increase of GFP+ striatal neurons; reaching maximal striatal cell GFP+ counts at 4 days after injection. All serotypes displayed peak transgene expression by 4 weeks post injection where native GFP+ neurons were equal to immunostained striatal GFP+ neurons. The inflammatory response to these rAAV vectors was present up to 4 weeks after transduction but was not apparent 9 months post injection. Thus, rAAV-mediated transgene expression begins earlier than previously thought

    Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders

    No full text
    Recombinant adeno-associated virus (rAAV) is derived from a small human parvovirus with an excellent safety profile. In addition, this viral vector efficiently transduces and supports long-term transgene expression in the nervous system. These properties make rAAV a reasonable candidate vector for treating neurological disorders. Indeed, rAAV is currently being used in five early stage clinical trials for various neurodegenerative disorders. Therefore, we will review the currently available preclinical data using rAAV in animal models of central nervous system (CNS) disorders. Moreover, potential caveats for rAAV-based gene therapy in the CNS are also presented. Copyright © The American Society of Gene Therapy

    Striatal Readministration of rAAV Vectors Reveals an Immune Response Against AAV2 Capsids That Can Be Circumvented

    No full text
    Recombinant adeno-associated virus (rAAV) expresses no viral genes after transduction. In addition, because the brain is relatively immunoprivileged, intracranial rAAV transduction may be immunologically benign due to a lack of antigen presentation. However, preexposure to AAV allows neutralizing antibodies (nAbs) to block brain transduction and rAAV readministration in the brain leads to an inflammatory response in the second-injection site. In this study, we replicate our striatal rAAV2/2-GDNF readministration results and extend this effect to a second transgene, green fluorescent protein (GFP). Unlike rAAV2/2-GDNF readministration, striatal rAAV2/2-GFP readministration leads to a loss of transgene in the second site in the absence of detectable circulating nAbs. In order to determine whether the transgene or the AAV2 capsid is the antigenic stimulus in brain for the immune response in the second site, we readministered rAAV2/2-GFP using two different rAAV serotypes (rAAV2/2 followed by rAAV2/5). In this case, there was no striatal inflammation or transgene loss detected in the second-injection site. In addition, striatal readministration of rAAV2/5-GFP also resulted in no detectable immune response. Furthermore, delaying rAAV2/2 striatal readministration to a 11-week interval abrogated the immune response in the second-injection site. Finally, while striatal readministration of rAAV2/2 leads to significant loss of transgene in the second-injection site, this effect is not due to loss of vector genomes as determined by quantitative real-time PCR. We conclude that intracellular processing of AAV capsids after transduction is the immunogenic antigen and capsid serotypes that are processed more quickly than rAAV2/2 are less immunogenic

    Comprehensive Screening of a North American Parkinson's Disease Cohort for LRRK2 Mutation

    No full text
    Background Recently, mutations in LRRK2 encoding the protein dardarin have been linked to an autosomal dominant form of parkinsonism. Objective To identify mutations causing Parkinson’s disease (PD) in a cohort of North Americans with familial PD. Methods We sequenced exons 1–51 of LRRK2 in 79 unrelated North American PD patients reporting a family history of the disease. Results One patient had a missense mutation (Thr2356Ile) while two others had the common Gly2019Ser mutation. In addition, 1 patient had a 4-bp deletion in close proximity to the exon 19 splice donor (IVS20+4delGTAA) that in vitro abrogates normal splicing. Conclusions Our observations in the 79 North American patients indicate that mutations in LRRK2 are associated with approximately 5% of PD cases with a positive family history. The results also show that G2019S represents approximately half of the LRRK2 mutations in United States PD cases with a family history of the disease. We have identified two novel mutations in LRRK2

    Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease

    No full text
    Background Mutations in the PTEN-induced kinase (PINK1) gene located within the PARK6 locus on chromosome 1p35-p36 have recently been identified in patients with recessive early-onset Parkinson disease. Objective To assess the prevalence of PINK1 mutations within a series of early- and late-onset Parkinson disease patients living in North America. Design All coding exons of the PINK1 gene were sequenced in a series of 289 Parkinson disease patients and 80 neurologically normal control subjects; the mutation frequencies were evaluated in additional controls (100 white and 50 Filipino subjects). Results We identified 27 variants, including the first reported compound heterozygous mutation (Glu240Lys and Leu489Pro) and a homozygous Leu347Pro mutation in 2 unrelated young-onset Parkinson disease patients. Conclusion Autosomal recessive mutations in PINK1 are a rare cause of young-onset Parkinson disease
    corecore