105 research outputs found

    Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase

    Get PDF
    Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx null mice develop a normal cartilage skeleton but fail to form bone and to express osteoblast-specific marker genes. To better understand the control of transcriptional regulation by Osx, we identified Osx-interacting proteins using proteomics approaches. Here, we report that a Jumonji C (JmjC)-domain containing protein, called NO66, directly interacts with Osx and inhibits Osx-mediated promoter activation. The knockdown of NO66 in preosteoblast cells triggered accelerated osteoblast differentiation and mineralization, and markedly stimulated the expression of Osx target genes. A JmjC-dependent histone demethylase activity was exhibited by NO66, which was specific for both H3K4me and H3K36me in vitro and in vivo, and this activity was needed for the regulation of osteoblast-specific promoters. During BMP-2-induced differentiation of preosteoblasts, decreased NO66 occupancy correlates with increased Osx occupancy at Osx-target promoters. Our results indicate that interactions between NO66 and Osx regulate Osx-target genes in osteoblasts by modulating histone methylation states

    R loops stimulate genetic instability of CTG·CAG repeats

    Get PDF
    Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA·DNA hybrids enhances the instability of CTG·CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA·DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG·CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG·CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG·CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA·DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG·CAG tracts promote instability of DNA trinucleotide repeats

    The Ursinus Weekly, September 30, 1976

    Get PDF
    Ursinus news in brief: Times cites college depression; 76\u27ers arrive for training; Simon participates in mission; Absentee ballots explained; Richter named Ursinus President • \u2776 enrollment drops • Dorm letter drafted • SFARC year opens • Comment: Action, not promises • Cheap shot commentators • Cost comparisons • Movie controversy • The Last hurrah: An introduction to Ursinus romance • Legal society success • Coming campus events • Teacher knows best! • Record review • Curriculum addition in history • Campaign-advance Ursinus • Phils to see red • Gurzynski retires from X-country • Soccer drops two • F.&M. beats Ursinus • Karas regime opens • Harriers 3 and 1 • What lies ahead • Hockey still winning • Saturday\u27s gamehttps://digitalcommons.ursinus.edu/weekly/1057/thumbnail.jp

    Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer

    Get PDF
    <p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p> <p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α.</p> <p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p&gt

    Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice

    Get PDF
    Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients

    Consensus guidelines for sarcopenia prevention, diagnosis and management in Australia and New Zealand

    Get PDF
    Background: Sarcopenia is an age-associated skeletal muscle condition characterized by low muscle mass, strength, and physical performance. There is no international consensus on a sarcopenia definition and no contemporaneous clinical and research guidelines specific to Australia and New Zealand. The Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force aimed to develop consensus guidelines for sarcopenia prevention, assessment, management and research, informed by evidence, consumer opinion, and expert consensus, for use by health professionals and researchers in Australia and New Zealand. Methods: A four-phase modified Delphi process involving topic experts and informed by consumers, was undertaken between July 2020 and August 2021. Phase 1 involved a structured meeting of 29 Task Force members and a systematic literature search from which the Phase 2 online survey was developed (Qualtrics). Topic experts responded to 18 statements, using 11-point Likert scales with agreement threshold set a priori at \u3e 80 %, and five multiple-choice questions. Statements with moderate agreement (70 % – 80 %) were revised and re-introduced in Phase 3, and statements with low agreement ( \u3c 70 %) were rejected. In Phase 3, topic experts responded to six revised statements and three additional questions, incorporating results from a parallel Consumer Expert Delphi study. Phase 4 involved finalization of consensus statements. Results: Topic experts from Australia (n = 62, 92.5 %) and New Zealand (n = 5, 7.5 %) with a mean ± SD age of 45.7 ± 11.8 years participated in Phase 2; 38 (56.7 %) were women, 38 (56.7 %) were health professionals and 27 (40.3 % ) were researchers/academics. In Phase 2, 15 of 18 (83.3 %) statements on sarcopenia prevention, screening, assessment, management and future research were accepted with strong agreement. The strongest agreement related to encouraging a healthy lifestyle (100 %) and offering tailored resistance training to people with sarcopenia (92.5 %). Forty-seven experts participated in Phase 3; 5/6 (83.3 %) revised statements on prevention, assessment and management were accepted with strong agreement. A majority of experts (87.9 %) preferred the revised European Working Group for Sarcopenia in Older Persons (EWGSOP2) definition. Seventeen statements with strong agreement ( \u3e 80 %) were confirmed by the Task Force in Phase 4. Conclusions: The ANZSSFR Task Force present 17 sarcopenia management and research recommendations for use by health professionals and researchers which includes the recommendation to adopt the EWGSOP2 sarcopenia definition in Australia and New Zealand. This rigorous Delphi process that combined evidence, consumer expert opinion and topic expert consensus can inform similar initiatives in countries/regions lacking consensus on sarcopenia

    The Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) sarcopenia diagnosis and management task force: Findings from the consumer expert Delphi process

    Get PDF
    Objectives: To develop guidelines, informed by health-care consumer values and preferences, for sarcopenia prevention, assessment and management for use by clinicians and researchers in Australia and New Zealand. Methods: A three-phase Consumer Expert Delphi process was undertaken between July 2020 and August 2021. Consumer experts included adults with lived experience of sarcopenia or health-care utilisation. Phase 1 involved a structured meeting of the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force and consumer representatives from which the Phase 2 survey was developed. In Phase 2, consumers from Australia and New Zealand were surveyed online with opinions sought on sarcopenia outcome priorities, consultation preferences and interventions. Findings were confirmed and disseminated in Phase 3. Descriptive statistical analyses were performed. Results: Twenty-four consumers (mean ± standard deviation age 67.5 ± 12.8 years, 18 women) participated in Phase 2. Ten (42%) identified as being interested in sarcopenia, 7 (29%) were health-care consumers and 6 (25%) self-reported having/believing they have sarcopenia. Consumers identified physical performance, living circumstances, morale, quality of life and social connectedness as the most important outcomes related to sarcopenia. Consumers either had no preference (46%) or preferred their doctor (40%) to diagnose sarcopenia and preferred to undergo assessments at least yearly (54%). For prevention and treatment, 46% of consumers preferred resistance exercise, 2–3 times per week (54%). Conclusions: Consumer preferences reported in this study can inform the implementation of sarcopenia guidelines into clinical practice at local, state and national levels across Australia and New Zealand

    N-Myc and GCN5 Regulate Significantly Overlapping Transcriptional Programs in Neural Stem Cells

    Get PDF
    Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC) using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo

    Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes

    Get PDF
    Abstract Background Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading to altered transcription states that result in changes in cell identity, behavior, and response to therapy. Results To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells. Discussion Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific chromatin signatures to nominate potential biomarkers. This approach identified AFAP1-AS1 as a triple negative breast cancer-specific gene associated with cell proliferation and epithelial-mesenchymal-transition. In addition, our chromatin mapping data in basal TNBC cell lines are consistent with gene expression patterns in TCGA that indicate decreased activity of the androgen receptor pathway but increased activity of the vitamin D biosynthesis pathway. Conclusions Together, these datasets provide a comprehensive resource for histone modification profiles that define epigenetic landscapes and reveal key chromatin signatures in breast cancer cell line subtypes with potential to identify novel and actionable targets for treatment.https://deepblue.lib.umich.edu/bitstream/2027.42/142394/1/12864_2018_Article_4533.pd

    Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes

    Get PDF
    Abstract Background Epigenetic regulators are frequently mutated or aberrantly expressed in a variety of cancers, leading to altered transcription states that result in changes in cell identity, behavior, and response to therapy. Results To define alterations in epigenetic landscapes in breast cancers, we profiled the distributions of 8 key histone modifications by ChIP-Seq, as well as primary (GRO-seq) and steady state (RNA-Seq) transcriptomes, across 13 distinct cell lines that represent 5 molecular subtypes of breast cancer and immortalized human mammary epithelial cells. Discussion Using combinatorial patterns of distinct histone modification signals, we defined subtype-specific chromatin signatures to nominate potential biomarkers. This approach identified AFAP1-AS1 as a triple negative breast cancer-specific gene associated with cell proliferation and epithelial-mesenchymal-transition. In addition, our chromatin mapping data in basal TNBC cell lines are consistent with gene expression patterns in TCGA that indicate decreased activity of the androgen receptor pathway but increased activity of the vitamin D biosynthesis pathway. Conclusions Together, these datasets provide a comprehensive resource for histone modification profiles that define epigenetic landscapes and reveal key chromatin signatures in breast cancer cell line subtypes with potential to identify novel and actionable targets for treatment
    corecore