14 research outputs found

    The supervised IBP: neighbourhood preserving infinite latent feature models

    Get PDF
    We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space

    ATTRIBUTIVE PROPAEDEUTICS OF ACCOUNTING REPORTING AS A MEANS OF COMMUNICATING THE SYSTEM OF INDICATORS IN DESCRIPTIVE MODELS OF ECONOMIC ANALYTICS

    Get PDF
    The article deals with accounting reporting as a means of communicating the system of indicators in descriptive models of economic analytics. Formalized algorithmic procedures for calculating key invariant indices suitable for use of standard packets of analytical orientation applications are constructed. The descriptive model and the formation of its information support are considered. In forming the system of indicators for conducting an economic analysis of the financial condition of the enterprise, in order to reduce the number of calculations and improve the efficiency when conducting an express analysis of the financial condition of the enterprise, a heuristic method of permissible multicollinearity with acceptable (tested by practice) characteristics is proposed.The article deals with accounting reporting as a means of communicating the system of indicators in descriptive models of economic analytics. Formalized algorithmic procedures for calculating key invariant indices suitable for use of standard packets of analytical orientation applications are constructed. The descriptive model and the formation of its information support are considered. In forming the system of indicators for conducting an economic analysis of the financial condition of the enterprise, in order to reduce the number of calculations and improve the efficiency when conducting an express analysis of the financial condition of the enterprise, a heuristic method of permissible multicollinearity with acceptable (tested by practice) characteristics is proposed

    Contrastive examples for addressing the tyranny of the majority

    Get PDF
    Computer vision algorithms, e.g. for face recognition, favour groups of individuals that are better represented in the training data. This happens because of the generalization that classifiers have to make. It is simpler to fit the majority groups as this fit is more important to overall error. We propose to create a balanced training dataset, consisting of the original dataset plus new data points in which the group memberships are intervened, minorities become majorities and vice versa. We show that current generative adversarial networks are a powerful tool for learning these data points, called contrastive examples. We experiment with the equalized odds bias measure on tabular data as well as image data (CelebA and Diversity in Faces datasets). Contrastive examples allow us to expose correlations between group membership and other seemingly neutral features. Whenever a causal graph is available, we can put those contrastive examples in the perspective of counterfactuals

    Ambiguity helps: classification with disagreements in crowdsourced annotations

    Get PDF
    Imagine we show an image to a person and ask her/him to decide whether the scene in the image is warm or not warm, and whether it is easy or not to spot a squirrel in the image. For exactly the same image, the answers to those questions are likely to differ from person to person. This is because the task is inherently ambiguous. Such an ambiguous, therefore challenging, task is pushing the boundary of computer vision in showing what can and can not be learned from visual data. Crowdsourcing has been invaluable for collecting annotations. This is particularly so for a task that goes beyond a clear-cut dichotomy as multiple human judgments per image are needed to reach a consensus. This paper makes conceptual and technical contributions. On the conceptual side, we define disagreements among annotators as privileged information about the data instance. On the technical side, we propose a framework to incorporate annotation disagreements into the classifiers. The proposed framework is simple, relatively fast, and outperforms classifiers that do not take into account the disagreements, especially if tested on high confidence annotations

    Distribution Matching for Multi-Task Learning of Classification Tasks: a Large-Scale Study on Faces & Beyond

    Get PDF
    Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space, or parameter transfer. To provide sufficient learning support, modern MTL uses annotated data with full, or sufficiently large overlap across tasks, i.e., each input sample is annotated for all, or most of the tasks. However, collecting such annotations is prohibitive in many real applications, and cannot benefit from datasets available for individual tasks. In this work, we challenge this setup and show that MTL can be successful with classification tasks with little, or non-overlapping annotations, or when there is big discrepancy in the size of labeled data per task. We explore task-relatedness for co-annotation and co-training, and propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching. To demonstrate the general applicability of our method, we conducted diverse case studies in the domains of affective computing, face recognition, species recognition, and shopping item classification using nine datasets. Our large-scale study of affective tasks for basic expression recognition and facial action unit detection illustrates that our approach is network agnostic and brings large performance improvements compared to the state-of-the-art in both tasks and across all studied databases. In all case studies, we show that co-training via task-relatedness is advantageous and prevents negative transfer (which occurs when MT model's performance is worse than that of at least one single-task model)

    Bi-directional representation learning for multi-label classification

    Get PDF
    Multi-label classification is a central problem in many application domains. In this paper, we present a novel supervised bi-directional model that learns a low-dimensional mid-level representation for multi-label classification. Unlike traditional multi-label learning methods which identify intermediate representations from either the input space or the output space but not both, the mid-level representation in our model has two complementary parts that capture intrinsic information of the input data and the output labels respectively under the autoencoder principle while augmenting each other for the target output label prediction. The resulting optimization problem can be solved efficiently using an iterative procedure with alternating steps, while closed-form solutions exist for one major step. Our experiments conducted on a variety of multi-label data sets demonstrate the efficacy of the proposed bi-directional representation learning model for multi-label classification

    Face behavior a la carte: expressions, affect and action units in a single Network

    Get PDF
    Automatic facial behavior analysis has a long history of studies in the intersection of computer vision, physiology and psychology. However it is only recently, with the collection of large-scale datasets and powerful machine learning methods such as deep neural networks, that automatic facial behavior analysis started to thrive. Three of its iconic tasks are automatic recognition of basic expressions (e.g. happy, sad, surprised), estimation of continuous emotions (e.g., valence and arousal), and detection of facial action units (activations of e.g. upper/inner eyebrows, nose wrinkles). Up until now these tasks have been mostly studied independently collecting a dataset for the task. We present the first and the largest study of all facial behaviour tasks learned jointly in a single multi-task, multi-domain and multi-label network, which we call FaceBehaviorNet. For this we utilize all publicly available datasets in the community (around 5M images) that study facial behaviour tasks in-the-wild. We demonstrate that training jointly an end-to-end network for all tasks has consistently better performance than training each of the single-task networks. Furthermore, we propose two simple strategies for coupling the tasks during training, co-annotation and distribution matching, and show the advantages of this approach. Finally we show that FaceBehaviorNet has learned features that encapsulate all aspects of facial behaviour, and can be successfully applied to perform tasks (compound emotion recognition) beyond the ones that it has been trained in a zero- and few-shot learning setting

    Distribution matching for heterogeneous multi-task learning: a large-scale face study

    Get PDF
    Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm, such as a DNN. MTL is based on the assumption that the tasks under consideration are related; therefore it exploits shared knowledge for improving performance on each individual task. Tasks are generally considered to be homogeneous, i.e., to refer to the same type of problem. Moreover, MTL is usually based on ground truth annotations with full, or partial overlap across tasks. In this work, we deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems. We explore task-relatedness as a means for co-training, in a weakly-supervised way, tasks that contain little, or even non-overlapping annotations. Task-relatedness is introduced in MTL, either explicitly through prior expert knowledge, or through data-driven studies. We propose a novel distribution matching approach, in which knowledge exchange is enabled between tasks, via matching of their predictions' distributions. Based on this approach, we build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks. We develop case studies for: i) continuous affect estimation, action unit detection, basic emotion recognition; ii) attribute detection, face identification. We illustrate that co-training via task relatedness alleviates negative transfer. Since FaceBehaviorNet learns features that encapsulate all aspects of facial behavior, we conduct zero-/few-shot learning to perform tasks beyond the ones that it has been trained for, such as compound emotion recognition. By conducting a very large experimental study, utilizing 10 databases, we illustrate that our approach outperforms, by large margins, the state-of-the-art in all tasks and in all databases, even in these which have not been used in its training

    Augmented attribute representations

    No full text
    We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone. © 2012 Springer-Verlag

    WiCV 2018: The Fourth Women In Computer Vision Workshop

    No full text
    We present WiCV 2018 - Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration, and to provide mentorship and give opportunities to female-identifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations
    corecore