41 research outputs found

    Computing queue length and waiting timedistributions in finite-buffer discrete-time multiserver queues with late and early arrivals

    Get PDF
    AbstractThis paper presents modelling and analysis of discrete-time multiserver finite-buffer queue with general interarrival and geometric service time. Using the supplementary variable technique, and considering the remaining interarrival time as a supplementary variable, two variants of this model, namely the late arrival system with delayed access (LAS-DA) and early arrival system (EAS), have been examined. For both the cases, steady-state system length distributions at arbitrary, prearrival, and outside observer's observation epochs have been obtained. Further, the waiting time distribution in the queue is also discussed. Various performance measures such as probability of loss, average number of busy servers and average waiting time in the queue etc. have been presented. It is hoped that the results obtained in this paper may provide useful information to designers of telecommunication systems, practitioners, and others

    9. Queues, storage and inventories

    No full text

    A systematic review of large scale and heterogeneous gene array data in heart failure

    No full text
    Microarray analysis has become a widely available tool for the generation of gene expression data on a genomic scale. Since the studies with similar protocols are growing, it has become necessary to systematically revise the large body of literature to decipher the gene expression data. In this review, we analyzed and critically discussed the database presented from 14 published studies that showed the gene expression profile in heart failure (HF) using microarray as a primary tool. After comparing the diverse database from these studies, we explain the protein translational, matri-cellular, immunological and fibrosis-related mechanisms in HF. In addition to previously annotated genes, we analyzed two differentially expressed expressed sequence tags (ESTs) (KIAA0152 and Suppressor of G(Two) allele of the suppressor of kinetochore protein-1, SGT1) in HF and showed how bio-informatic analysis of ESTs can lead to the identification of novel pathways active in HF. We have also discussed the new publicly accessible tools that link the gene expression data to gene ontogeny (GO) and functionality. Finally, we have systematically revised the chromosomal localization of the genes that are specifically up-regulated in HF. We have thus spotted chromosome 1, 2, 11 and 12 as the chromosomal hotspots of HF. This methodical approach will simplify the existing concepts on the evolution and progression of HF and lead us toward the development of newer diagnostic and therapeutic tools. Although modeled to HF, this approach should be of broader scientific interest to elaborate multiple genes and complex pathways

    Transient Behaviour of an M/M/1/N queue

    No full text

    Analysis of an intraspecific RIL population uncovers genomic segments harbouring multiple QTL for seed relevant traits in lentil (Lens culinaris L.)

    No full text
    Improving seed related traits remains key objective in lentil breeding. In recent years, genomic resources have shown great promise to accelerate crop improvement. However, limited genomic resources in lentil greatly restrict the use of genomics assisted breeding. The present investigation aims to build an intraspecific genetic linkage map and identify the QTL associated with important seed relevant traits using 94 recombinant inbreds (WA 8649090 × Precoz). A total of 288 polymorphic DNA markers including simple sequence repeat (SSR), inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) were assayed on mapping population. The resultant genetic linkage map comprised 220 loci spanning 604.2 cM of the lentil genome, with average inter-marker distance of 2.74 cM. QTL mapping in this RIL population uncovered a total of 18 QTL encompassing nine major and nine minor QTL. All major QTL were detected for seed related traits viz., seed diameter (SD), seed thickness (ST), seed weight (SW) and seed plumpness (SP) across two locations. A considerable proportion of the phenotypic variation (PV) was accounted to these QTL. For instance, one major QTL on LG5 controlling SW (QTL 15) explained 50% PV in one location, while the same QTL accounted for 34.18% PV in other location. Importantly, the genomic region containing multiple QTL for different seed traits was mapped to a 17-cM region on LG5. The genomic region harbouring QTL for multiple traits opens up exciting opportunities for genomics assisted improvement of lentil

    Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas

    No full text
    The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005–March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December–January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 μg m−3 in July to 1.17 ± 0.80 μg m−3 in May with the annual average of 0.67 ± 0.63 μg m−3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March–May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 μgm−3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region
    corecore