48,727 research outputs found

    Quantification of the density of cooperative neighboring synapses required to evoke endocannabinoid signaling

    Get PDF
    The spatial pattern of synapse activation may impact on synaptic plasticity. This applies to the synaptically-evoked endocannabinoid-mediated short-term depression at the parallel fiber (PF) to Purkinje cell synapse, the occurrence of which requires close proximity between the activated synapses. Here, we determine quantitatively this required proximity, helped by the geometrical organization of the cerebellar molecular layer. Transgenic mice expressing a calcium indicator selectively in granule cells enabled the imaging of action potential-evoked presynaptic calcium rise in isolated, single PFs. This measurement was used to derive the number of PFs activated within a beam of PFs stimulated in the molecular layer, from which the density of activated PFs (input density) was calculated. This density was on average 2.8μm in sagittal slices and twice more in transverse slices. The synaptically-evoked endocannabinoid-mediated suppression of excitation (SSE) evoked by ten stimuli at 200Hz was determined from the monitoring of either postsynaptic responses or presynaptic calcium rise. The SSE was significantly larger when recorded in transverse slices, where the input density is larger. The exponential description of the SSE plotted as a function of the input density suggests that the SSE is half reduced when the input density decreases from 6 to 2μm. We conclude that, although all PFs are truncated in an acute sagittal slice, half of them remain respondent to stimulation, and activated synapses need to be closer than 1.5μm to synergize in endocannabinoid signaling. © 2013 The authors

    Atomistic study on the effect of the size of diamond abrasive particle during polishing of stainless steel

    Get PDF
    Nanofinishing or polishing helps to reduce surface roughness, which further improves both the optical and chemical properties of engineering materials. During the polishing of any engineering material, the size of abrasive particles plays a significant role in efficient polishing. In this paper, stainless steel 304 (or SS304) is selected for polishing through diamond abrasives with varying particle sizes using molecular dynamics simulations (MDS). It is found that the diamond abrasive particle initially causes elastic deformation due to the attractive force between the abrasive particle and the workpiece surface. As the size of the abrasive particle increases, plastic deformation occurs by spreading the dislocations on the surface only, which helps to annihilate the dislocations after polishing. It is revealed that the smaller abrasive particles (<3 nm) get trapped due to strong chemical bonding with the surface of the workpiece, and the abrasive particles start depositing on the workpiece instead of material removal. In this paper, it is proposed that an optimum size of abrasive particles is required for a given set of polishing parameters to achieve efficient material removal and minimum surface and subsurface defects. Thus, the present study is worthwhile for efficient polishing or nanocutting of stainless steel through monocrystalline diamond

    Mechanism of surface modification on monocrystalline silicon during diamond polishing at nanometric scale

    Get PDF
    The demand for polished silicon wafers has increased significantly in recent years to cater to the development of the semiconductor industry. For example, polished silicon wafer has direct applications in integrated circuits, radio frequency amplifiers, micro-processors, micro-electromechanical systems, etc. To carry out mechanical polishing, lapping, grinding, or single-point diamond turning of silicon, diamond abrasives were extensively used before the implementation of chemo-mechanical polishing. During the diamond-based polishing, a few problems have already been identified, such as the formation of an amorphous phase, heat-affected zones, low material removal, etc. Some research work has also reported that nano-structured abrasives lead to a thin layer of the amorphous phase and a better material removal rate. In the same direction, a molecular dynamics simulation is carried out in this paper to investigate the mechanism of material removal from monocrystalline silicon during the diamond-abrasive-based polishing process. The present work is mainly focused on the dynamics of material removal phenomena near the abrasive particles at the nanometric scale by considering stress, lattice, cohesive energy, etc. This reveals that a higher value of indentation force results in surface buckling, which creates a zone of both compressive and tensile stresses, which increases the coordination number and forms β-silicon just ahead of the abrasive particle. This mechanism happens by developing a β-silicon phase on the surface with a thickness beyond a certain value of indentation force on the zone of compression. Buckling on this phase happens due to stress localisation in compression, as the flow stress of this phase is less than that of diamond cubic lattices. To avoid the mechanism of surface buckling and process silicon material on the surface, the indentation force needs to be maintained below a critical value. In the present case, it was found that the indentation force of less than or equal to 190 nN for the abrasive size of ϕ8 nm does the material removal by surface processing only without surface buckling. It was also found that surface processing helps to reduce the depth of the amorphous layer significantly without compromising the material removal rate or the generation of a wavy surface. Thus, the present mechanism will help in the polishing of silicon with minimum defects and reduce processing time for the final stage of polishing towards manufacturing ultra-smooth and planer surfaces

    The generalized gradient approximation kernel in time-dependent density functional theory

    Full text link
    A complete understanding of a material requires both knowledge of the excited states as well as of the ground state. In particular, the low energy excitations are of utmost importance while studying the electronic, magnetic, dynamical, and thermodynamical properties of the material. Time-Dependent Density Functional Theory (TDDFT), within the linear regime, is a successful \textit{ab-initio} method to access the electronic charge and spin excitations. However, it requires an approximation to the exchange-correlation (XC) kernel which encapsulates the effect of electron-electron interactions in the many-body system. In this work we derive and implement the spin-polarized XC kernel for semi-local approximations such as the adiabatic Generalized Gradient Approximation (AGGA). This kernel has a quadratic dependence on the wavevector, {\bf q}, of the perturbation, however the impact of this on the electron energy loss spectra (EELS) is small. Although the GGA functional is good in predicting structural properties, it generality overestimates the exchange spin-splitting. This leads to higher magnon energies, as compared to both ALDA and experiment. In addition, interaction with the Stoner spin-flip continuum is enhanced by AGGA, which strongly suppresses the intensity of spin-waves.Comment: 11 pages, 7 figure

    Generator Coordinate Calculations for the Breathing-Mode Giant Monopole Resonance in Relativistic Mean Field Theory

    Get PDF
    The breathing-mode giant monopole resonance (GMR) is studied within the framework of the relativistic mean-field theory using the Generator Coordinate Method (GCM). The constrained incompressibility and the excitation energy of isoscalar giant monopole states are obtained for finite nuclei with various sets of Lagrangian parameters. A comparison is made with the results of nonrelativistic constrained Skyrme Hartree-Fock calculations and with those from Skyrme RPA calculations. In the RMF theory the GCM calculations give a transition density for the breathing mode, which resembles much that obtained from the Skyrme HF+RPA approach and also that from the scaling mode of the GMR. From the systematic study of the breathing-mode as a function of the incompressibility in GCM, it is shown that the GCM succeeds in describing the GMR energies in nuclei and that the empirical breathing-mode energies of heavy nuclei can be reproduced by forces with an incompressibility close to K=300K = 300 MeV in the RMF theory.Comment: 27 pages (Revtex) and 5 figures (available upon request), Preprint MPA-793 (March 1994

    High-Symmetry Polarization Domains in Low-Symmetry Ferroelectrics

    Full text link
    We present experimental evidence for hexagonal domain faceting in the ferroelectric polymer PVDF-TrFE films having the lower orthorhombic crystallographic symmetry. This effect can arise from purely electrostatic depolarizing forces. We show that in contrast to magnetic bubble shape domains where such type of deformation instability has a predominantly elliptical character, the emergence of more symmetrical circular harmonics is favored in ferroelectrics with high dielectric constant

    Research Question, Study Design and Continuous Research Education and Training Exercises (CREATE) Program.

    Get PDF
    The clinical research project starts with identifying the optimal research question, one that is ethical, impactful, feasible, scientifically sound, novel, relevant, and interesting. The project continues with the design of the study to answer the research question. Such design should be consistent with ethical and methodological principles, and make optimal use of resources in order to have the best chances of identifying a meaningful answer to the research question. Physicians and other healthcare providers are optimally positioned to identify meaningful research questions the answer to which could make significant impact on healthcare delivery. The typical medical education curriculum, however, lacks solid training in clinical research. We propose CREATE (Continuous Research Education And Training Exercises) as a peer- and group-based, interactive, analytical, customized, and accrediting program with didactic, training, mentoring, administrative, and professional support to enhance clinical research knowledge and skills among healthcare professionals, promote the generation of original research projects, increase the chances of their successful completion and potential for meaningful impact. The key features of the program are successive intra- and inter-group discussions and confrontational thematic challenges among participating peers aimed at capitalizing on the groups' collective knowledge, experience and skills, and combined intellectual processing capabilities to optimize choice of research project elements and stakeholder decision-making

    High speed hydrogen/graphite interaction

    Get PDF
    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion
    corecore