57,139 research outputs found

    Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,

    Full text link
    The isospin dependence of the spin-orbit potential is investigated for an effective Skyrme-like energy functional suitable for density dependent Hartree-Fock calculations. The magnitude of the isospin dependence is obtained from a fit to experimental data on finite spherical nuclei. It is found to be close to that of relativistic Hartree models. Consequently, the anomalous kink in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request, Preprint MPA-833, Physical Review Letters (in press)

    Decoherence of tripartite states - a trapped ion coupled to an optical cavity

    Full text link
    We investigate the non-dissipative decoherence of three qubit system obtained by manipulating the state of a trapped two-level ion coupled to an optical cavity. Modelling the environment as a set of noninteracting harmonic oscillators, analytical expressions for the state operator of tripartite composite system, the probability of generating maximally entangled GHZ state, and the population inversion have been obtained. The pointer observable is the energy of the isolated quantum system. Coupling to environment results in exponential decay of off diagonal matrix elements of the state operator with time as well as a phase decoherence of the component states. Numerical calculations to examine the time evolution of GHZ state generation probability and population inversion for different system environment coupling strengths are performed. Using negativity as an entanglement measure and linear entropy as a measure of mixedness, the entanglement dynamics of the tripartite system in the presence of decoherence is analysed.Comment: Revised version, errors corrected and references added. 12 pages, 6 figures, Presented at ICSSUR May 2005, Besancon, Franc

    The BCS theory of q-deformed nucleon pairs - qBCS

    Full text link
    We construct a coherent state of q-deformed zero coupled nucleon pairs distributed in several single-particle orbits. Using a variational approach, the set of equations of qBCS theory, to be solved self consistently for occupation probabilities, gap parameter Delta, and the chemical potential lambda, is obtained. Results for valence nucleons in nuclear degenerate sdg major shell show that the strongly coupled zero angular momentum nucleon pairs can be substituted by weakly coupled q-deformed zero angular momentum nucleon pairs. A study of Sn isotopes reveals a well defined universe of (G, q) values, for which qBCS converges. While the qBCS and BCS show similar results for Gap parameter Delta in Sn isotopes, the ground state energies are lower in qBCS. The pairing correlations in N nucleon system, increase with increasing q (for q real).Comment: 8 pages, REVTEX, 3 eps figure

    All-electron Exact Exchange Treatment of Semiconductors: Effect of Core-valence Interaction on Band-gap and dd-band Position

    Full text link
    Exact exchange (EXX) Kohn-Sham calculations within an all-electron full-potential method are performed on a range of semiconductors and insulators (Ge, GaAs, CdS, Si, ZnS, C, BN, Ne, Ar, Kr and Xe). We find that the band-gaps are not as close to experiment as those obtained from previous pseudopotential EXX calculations. Full-potential band-gaps are also not significantly better for spsp semiconductors than for insulators, as had been found for pseudopotentials. The locations of dd-band states, determined using the full-potential EXX method, are in excellent agreement with experiment, irrespective of whether these states are core, semi-core or valence. We conclude that the inclusion of the core-valence interaction is necessary for accurate determination of EXX Kohn-Sham band structures, indicating a possible deficiency in pseudopotential calculations.Comment: 4 pages 2 fig

    Turbulence and Mixing in the Intracluster Medium

    Full text link
    The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy ss increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when dT/dr>0dT/dr>0 and the "magnetothermal instability" when dT/dr<0dT/dr<0. The ICM is thus buoyantly unstable regardless of the signs of dT/drdT/dr and ds/drds/dr. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to r^\hat{\bf r} when dT/dr>0dT/dr>0 and parallel to r^\hat{\bf r} when dT/dr<0dT/dr<0), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities 10100km/s\gtrsim 10 -100 {km/s}. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the general mixing properties of the IC
    corecore