1,704 research outputs found

    Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking

    Get PDF
    Public speaking is an important aspect of human communication and interaction. The majority of computational work on public speaking concentrates on analyzing the spoken content, and the verbal behavior of the speakers. While the success of public speaking largely depends on the content of the talk, and the verbal behavior, non-verbal (visual) cues, such as gestures and physical appearance also play a significant role. This paper investigates the importance of visual cues by estimating their contribution towards predicting the popularity of a public lecture. For this purpose, we constructed a large database of more than 18001800 TED talk videos. As a measure of popularity of the TED talks, we leverage the corresponding (online) viewers' ratings from YouTube. Visual cues related to facial and physical appearance, facial expressions, and pose variations are extracted from the video frames using convolutional neural network (CNN) models. Thereafter, an attention-based long short-term memory (LSTM) network is proposed to predict the video popularity from the sequence of visual features. The proposed network achieves state-of-the-art prediction accuracy indicating that visual cues alone contain highly predictive information about the popularity of a talk. Furthermore, our network learns a human-like attention mechanism, which is particularly useful for interpretability, i.e. how attention varies with time, and across different visual cues by indicating their relative importance

    Scalable Nonlinear Embeddings for Semantic Category-based Image Retrieval

    Full text link
    We propose a novel algorithm for the task of supervised discriminative distance learning by nonlinearly embedding vectors into a low dimensional Euclidean space. We work in the challenging setting where supervision is with constraints on similar and dissimilar pairs while training. The proposed method is derived by an approximate kernelization of a linear Mahalanobis-like distance metric learning algorithm and can also be seen as a kernel neural network. The number of model parameters and test time evaluation complexity of the proposed method are O(dD) where D is the dimensionality of the input features and d is the dimension of the projection space - this is in contrast to the usual kernelization methods as, unlike them, the complexity does not scale linearly with the number of training examples. We propose a stochastic gradient based learning algorithm which makes the method scalable (w.r.t. the number of training examples), while being nonlinear. We train the method with up to half a million training pairs of 4096 dimensional CNN features. We give empirical comparisons with relevant baselines on seven challenging datasets for the task of low dimensional semantic category based image retrieval.Comment: ICCV 2015 preprin

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Economic Analysis of Post-harvest Losses in Marketing of Vegetables in Uttarakhand

    Get PDF
    The study has examined the nature and extent of post-harvest losses in vegetable supply chain in the Kumaon division of Uttarakhand. Multistage cluster sampling has been used for selection of 80 vegetable growers, 40 farmers from the hilly region and 40 farmers from the bhabhar region. The sample has also included 25 market functionaries. Twelve major vegetables have been selected for the study. The maximum aggregate post-harvest losses have been found in tomato, followed by potato, brinjal, chilly, French bean and pea. The study has suggested that establishment of producer co-operatives to handle various activities relating to production and marketing of vegetables would help in reducing post-harvest losses.Post-harvest losses, Uttarakhand, Vegetable supply chain, Tomato, Potato, Brinjal, Chilly, French bean, Pea, Agricultural and Food Policy, Q13, Q12, Q18,

    LOMo: Latent Ordinal Model for Facial Analysis in Videos

    Full text link
    We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, brow lower and cheek raise for pain). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations. In combination with complimentary features, we report state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Brief Analysis of Methods for Detecting Moving Objects Using Computer Vision

    Get PDF
    In many computer vision applications, moving object detection has drawn notable interest. The scientific community has made numerous contributions to address the significant difficulties of moving object detection in practical settings. The research thoroughly analyzes several moving object recognition methods, which are divided into four groups: methods based on background modeling, Approaches rooted in frame differences, methods based on visual motion estimation, and methodologies based on deep learning. Additionally, thorough explanations of numerous techniques in each category are offered
    • …
    corecore