1,704 research outputs found
Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking
Public speaking is an important aspect of human communication and
interaction. The majority of computational work on public speaking concentrates
on analyzing the spoken content, and the verbal behavior of the speakers. While
the success of public speaking largely depends on the content of the talk, and
the verbal behavior, non-verbal (visual) cues, such as gestures and physical
appearance also play a significant role. This paper investigates the importance
of visual cues by estimating their contribution towards predicting the
popularity of a public lecture. For this purpose, we constructed a large
database of more than TED talk videos. As a measure of popularity of the
TED talks, we leverage the corresponding (online) viewers' ratings from
YouTube. Visual cues related to facial and physical appearance, facial
expressions, and pose variations are extracted from the video frames using
convolutional neural network (CNN) models. Thereafter, an attention-based long
short-term memory (LSTM) network is proposed to predict the video popularity
from the sequence of visual features. The proposed network achieves
state-of-the-art prediction accuracy indicating that visual cues alone contain
highly predictive information about the popularity of a talk. Furthermore, our
network learns a human-like attention mechanism, which is particularly useful
for interpretability, i.e. how attention varies with time, and across different
visual cues by indicating their relative importance
Scalable Nonlinear Embeddings for Semantic Category-based Image Retrieval
We propose a novel algorithm for the task of supervised discriminative
distance learning by nonlinearly embedding vectors into a low dimensional
Euclidean space. We work in the challenging setting where supervision is with
constraints on similar and dissimilar pairs while training. The proposed method
is derived by an approximate kernelization of a linear Mahalanobis-like
distance metric learning algorithm and can also be seen as a kernel neural
network. The number of model parameters and test time evaluation complexity of
the proposed method are O(dD) where D is the dimensionality of the input
features and d is the dimension of the projection space - this is in contrast
to the usual kernelization methods as, unlike them, the complexity does not
scale linearly with the number of training examples. We propose a stochastic
gradient based learning algorithm which makes the method scalable (w.r.t. the
number of training examples), while being nonlinear. We train the method with
up to half a million training pairs of 4096 dimensional CNN features. We give
empirical comparisons with relevant baselines on seven challenging datasets for
the task of low dimensional semantic category based image retrieval.Comment: ICCV 2015 preprin
Discriminatively Trained Latent Ordinal Model for Video Classification
We study the problem of video classification for facial analysis and human
action recognition. We propose a novel weakly supervised learning method that
models the video as a sequence of automatically mined, discriminative
sub-events (eg. onset and offset phase for "smile", running and jumping for
"highjump"). The proposed model is inspired by the recent works on Multiple
Instance Learning and latent SVM/HCRF -- it extends such frameworks to model
the ordinal aspect in the videos, approximately. We obtain consistent
improvements over relevant competitive baselines on four challenging and
publicly available video based facial analysis datasets for prediction of
expression, clinical pain and intent in dyadic conversations and on three
challenging human action datasets. We also validate the method with qualitative
results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text
overlap with arXiv:1604.0150
Digital Color Imaging
This paper surveys current technology and research in the area of digital
color imaging. In order to establish the background and lay down terminology,
fundamental concepts of color perception and measurement are first presented
us-ing vector-space notation and terminology. Present-day color recording and
reproduction systems are reviewed along with the common mathematical models
used for representing these devices. Algorithms for processing color images for
display and communication are surveyed, and a forecast of research trends is
attempted. An extensive bibliography is provided
Economic Analysis of Post-harvest Losses in Marketing of Vegetables in Uttarakhand
The study has examined the nature and extent of post-harvest losses in vegetable supply chain in the Kumaon division of Uttarakhand. Multistage cluster sampling has been used for selection of 80 vegetable growers, 40 farmers from the hilly region and 40 farmers from the bhabhar region. The sample has also included 25 market functionaries. Twelve major vegetables have been selected for the study. The maximum aggregate post-harvest losses have been found in tomato, followed by potato, brinjal, chilly, French bean and pea. The study has suggested that establishment of producer co-operatives to handle various activities relating to production and marketing of vegetables would help in reducing post-harvest losses.Post-harvest losses, Uttarakhand, Vegetable supply chain, Tomato, Potato, Brinjal, Chilly, French bean, Pea, Agricultural and Food Policy, Q13, Q12, Q18,
LOMo: Latent Ordinal Model for Facial Analysis in Videos
We study the problem of facial analysis in videos. We propose a novel weakly
supervised learning method that models the video event (expression, pain etc.)
as a sequence of automatically mined, discriminative sub-events (eg. onset and
offset phase for smile, brow lower and cheek raise for pain). The proposed
model is inspired by the recent works on Multiple Instance Learning and latent
SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in
the videos, approximately. We obtain consistent improvements over relevant
competitive baselines on four challenging and publicly available video based
facial analysis datasets for prediction of expression, clinical pain and intent
in dyadic conversations. In combination with complimentary features, we report
state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR
Expanded Parts Model for Semantic Description of Humans in Still Images
We introduce an Expanded Parts Model (EPM) for recognizing human attributes
(e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in
still images. An EPM is a collection of part templates which are learnt
discriminatively to explain specific scale-space regions in the images (in
human centric coordinates). This is in contrast to current models which consist
of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a
subset of the parts to score an image and scores the image sparsely in space,
i.e. it ignores redundant and random background in an image. To learn our
model, we propose an algorithm which automatically mines parts and learns
corresponding discriminative templates together with their respective locations
from a large number of candidate parts. We validate our method on three recent
challenging datasets of human attributes and actions. We obtain convincing
qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI
Brief Analysis of Methods for Detecting Moving Objects Using Computer Vision
In many computer vision applications, moving object detection has drawn notable interest. The scientific community has made numerous contributions to address the significant difficulties of moving object detection in practical settings. The research thoroughly analyzes several moving object recognition methods, which are divided into four groups: methods based on background modeling, Approaches rooted in frame differences, methods based on visual motion estimation, and methodologies based on deep learning. Additionally, thorough explanations of numerous techniques in each category are offered
- …