5 research outputs found

    Isolation and Characterization of Type I Signal Peptidase of Different Malaria Parasites

    Get PDF
    Type I signal peptidases are important membrane-bound serine proteases responsible for the cleavage of the signal peptide of the proteins. These enzymes are unique serine proteases that carry out catalysis using a serine/lysine catalytic dyad. In the present study, we report the isolation of type I signal peptidase from the malaria parasites Plasmodium falciparum, Plasmodium knowlesi, and Plasmodium yoelii and some characterization of type I signal peptidase of Plasmodium falciparum. We show that these enzymes are homologous to signal peptidases from various sources and also contain the conserved boxes present in other type I signal peptidases. The type I signal peptidase from P falciparum is an intron-less and a single-copy gene. The results also show that the enzyme from Plasmodium falciparum is subject to self-cleavage and it has been demonstrated to possess type I signal peptidase activity in E coli preprotein processing in vivo by complementation assay. This study will be helpful in understanding one of the important metabolic pathways ā€œthe secretory pathwayā€ in the parasite and should make an important contribution in understanding the complex process of protein targeting in the parasite

    Molecular detection of Mycoplasma pneumoniae by quantitative real-time PCR in patients with community acquired pneumonia

    Get PDF
    Background & Objectives: Mycoplasma pneumoniae is the most important and common cause of community-acquired pneumonia (CAP). The conventional detection methods (culture and serology) lack sensitivity. PCR offers a better approach for rapid detection but is prone to carry over contamination during manipulation of amplification products. Quantitative real-time PCR (qRT-PCR) method offers an attractive alternative detection method. In the present study, qRT-PCR, PCR and serology methods were used to detect M. pneumoniae infection in cases of pneumonias and findings compared. Methods: A total of 134 samples consisting of blood (for serology) and respiratory secretions (for PCR and qRT-PCR) from 134 patients were collected. The blood samples were tested for IgG, IgM and IgA using commercially available kits. For standardization of PCR of M. pneumoniae P1 gene was cloned in pGEMTEasy vector. Specific primers and reporter sequence were designed and procured for this fragment. The qRT-PCR assay was performed to prepare the standard curve for M. pneumoniae positive control DNA template and detection in patient samples. Results: Of the 134 patients, 26 (19%) were positive for antibodies against M. pneumoniae. IgG was positive in 14.92 per cent (20) cases, IgM in 4.47 per cent (6) and IgA was positive in 5.22 per cent (7) cases. In the qRT-PCR assay 19 per cent (26) samples were positive. Of the 26 qRT-PCR positive samples, nine could be detected by serology. PCR was positive for 25 samples. An extra sample negative by PCR was detected by qRT-PCR. Thus, real-time PCR assay, PCR and serology in combination could detect M. pneumoniae infection in 43 patients. Interpretation & Conclusions: The study shows that 17 patients were detected by serology alone, 17 were detected by qRT-PCR only and nine patients were positive by both serology and real-time PCR. Of the 134 samples tested, 25 were positive by conventional PCR, but qRT-PCR could detect one more sample that was negative by PCR and serology. These results suggest that a combination of two or three methods may be required for reliable identification of CAP due to M. pneumoniae

    Isolation and Characterization of Type I Signal Peptidase of Different Malaria Parasites

    No full text
    Type I signal peptidases are important membrane-bound serine proteases responsible for the cleavage of the signal peptide of the proteins. These enzymes are unique serine proteases that carry out catalysis using a serine/lysine catalytic dyad. In the present study, we report the isolation of type I signal peptidase from the malaria parasites Plasmodium falciparum, Plasmodium knowlesi, and Plasmodium yoelii and some characterization of type I signal peptidase of Plasmodium falciparum. We show that these enzymes are homologous to signal peptidases from various sources and also contain the conserved boxes present in other type I signal peptidases. The type I signal peptidase from P falciparum is an intron-less and a single-copy gene. The results also show that the enzyme from Plasmodium falciparum is subject to self-cleavage and it has been demonstrated to possess type I signal peptidase activity in E coli preprotein processing in vivo by complementation assay. This study will be helpful in understanding one of the important metabolic pathways "the secretory pathway" in the parasite and should make an important contribution in understanding the complex process of protein targeting in the parasite

    Molecular detection of Mycoplasma pneumoniae by quantitative real-time PCR in patients with community acquired pneumonia

    No full text
    Background & objectives: Mycoplasma pneumoniae is the most important and common cause of community-acquired pneumonia (CAP). The conventional detection methods (culture and serology) lack sensitivity. PCR offers a better approach for rapid detection but is prone to carry over contamination during manipulation of amplification products. Quantitative real-time PCR (qRT-PCR) method offers an attractive alternative detection method. In the present study, qRT-PCR, PCR and serology methods were used to detect M. pneumoniae infection in cases of pneumonias and findings compared. Methods: A total of 134 samples consisting of blood (for serology) and respiratory secretions (for PCR and qRT-PCR) from 134 patients were collected. The blood samples were tested for IgG, IgM and IgA using commercially available kits. For standardization of PCR of M. pneumoniae P1 gene was cloned in pGEMTEasy vector. Specific primers and reporter sequence were designed and procured for this fragment. The qRT-PCR assay was performed to prepare the standard curve for M. pneumoniae positive control DNA template and detection in patient samples. Results: Of the 134 patients, 26 (19%) were positive for antibodies against M. pneumoniae. IgG was positive in 14.92 per cent (20) cases, IgM in 4.47 per cent (6) and IgA was positive in 5.22 per cent (7) cases. In the qRT-PCR assay 19 per cent (26) samples were positive. Of the 26 qRT-PCR positive samples, nine could be detected by serology. PCR was positive for 25 samples. An extra sample negative by PCR was detected by qRT-PCR. Thus, real-time PCR assay, PCR and serology in combination could detect M. pneumoniae infection in 43 patients. Interpretation & conclusions: The study shows that 17 patients were detected by serology alone, 17 were detected by qRT-PCR only and nine patients were positive by both serology and real-time PCR. Of the 134 samples tested, 25 were positive by conventional PCR, but qRT-PCR could detect one more sample that was negative by PCR and serology. These results suggest that a combination of two or three methods may be required for reliable identification of CAP due to M. pneumoniae

    (a) SDS-PAGE and Western blot analysis of recombinant type I signal peptidase from

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Isolation and Characterization of Type I Signal Peptidase of Different Malaria Parasites"</p><p>Journal of Biomedicine and Biotechnology 2005;2005(4):301-309.</p><p>Published online Jan 2005</p><p>PMCID:PMC1364540.</p><p>Sutikshan Sharma et al</p> The proteins bound to Ni-NTA-agarose matrix were separated by SDS-PAGE and stained with Coomassie brilliant blue. Lane 1 shows the various bands after this staining. The letters a, b, and c correspond to the predicted fragments in panel (b). Lane 2 is the molecular weight marker. The size of molecular weight marker is written on the right side of lane 2. The same proteins were separated by SDS-PAGE and transferred to nitrocellulose membrane using standard protocols. The blot was probed with His-tag monoclonal antibodies and developed as described in materials and methods. Lane 3 shows that the same bands a, b, and c are reacting with the anti-His antibodies. (b) Size of the predicted degradation products of type I signal peptidase of cloned in pET28b. The clear area in the bar demonstrates the sequence of type I signal peptidase, area with vertical bars represents the amino acids of the vectors, and shaded area at the two ends is the His tag. The probable cleavage sites are shown by single-letter code in the box and the dashed vertical arrows indicate the site of cleavage. The horizontal arrows under the bar denote the size and location of the possible products a, b, and c shown in panel (a). (c) Growth curves of IT41 transformants containing the appropriate plasmids. The cultures grown overnight at 30C were diluted and incubated at 42C; the OD was monitored as a function of time. All points are the mean of at least two independent experiments
    corecore