9 research outputs found

    Conformal Policy Learning for Sensorimotor Control Under Distribution Shifts

    Full text link
    This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables. The key idea is the design of switching policies that can take conformal quantiles as input, which we define as conformal policy learning, that allows robots to detect distribution shifts with formal statistical guarantees. We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics, e.g. safety or speed, or directly augmenting a policy observation with a quantile and training it with reinforcement learning. Theoretically, we show that such policies achieve the formal convergence guarantees in finite time. In addition, we thoroughly evaluate their advantages and limitations on two compelling use cases: simulated autonomous driving and active perception with a physical quadruped. Empirical results demonstrate that our approach outperforms five baselines. It is also the simplest of the baseline strategies besides one ablation. Being easy to use, flexible, and with formal guarantees, our work demonstrates how conformal prediction can be an effective tool for sensorimotor learning under uncertainty.Comment: Conformal Policy Learnin

    Language Embedded Radiance Fields for Zero-Shot Task-Oriented Grasping

    Full text link
    Grasping objects by a specific part is often crucial for safety and for executing downstream tasks. Yet, learning-based grasp planners lack this behavior unless they are trained on specific object part data, making it a significant challenge to scale object diversity. Instead, we propose LERF-TOGO, Language Embedded Radiance Fields for Task-Oriented Grasping of Objects, which uses vision-language models zero-shot to output a grasp distribution over an object given a natural language query. To accomplish this, we first reconstruct a LERF of the scene, which distills CLIP embeddings into a multi-scale 3D language field queryable with text. However, LERF has no sense of objectness, meaning its relevancy outputs often return incomplete activations over an object which are insufficient for subsequent part queries. LERF-TOGO mitigates this lack of spatial grouping by extracting a 3D object mask via DINO features and then conditionally querying LERF on this mask to obtain a semantic distribution over the object with which to rank grasps from an off-the-shelf grasp planner. We evaluate LERF-TOGO's ability to grasp task-oriented object parts on 31 different physical objects, and find it selects grasps on the correct part in 81% of all trials and grasps successfully in 69%. See the project website at: lerftogo.github.ioComment: See the project website at: lerftogo.github.i

    Semantic Mechanical Search with Large Vision and Language Models

    Full text link
    Moving objects to find a fully-occluded target object, known as mechanical search, is a challenging problem in robotics. As objects are often organized semantically, we conjecture that semantic information about object relationships can facilitate mechanical search and reduce search time. Large pretrained vision and language models (VLMs and LLMs) have shown promise in generalizing to uncommon objects and previously unseen real-world environments. In this work, we propose a novel framework called Semantic Mechanical Search (SMS). SMS conducts scene understanding and generates a semantic occupancy distribution explicitly using LLMs. Compared to methods that rely on visual similarities offered by CLIP embeddings, SMS leverages the deep reasoning capabilities of LLMs. Unlike prior work that uses VLMs and LLMs as end-to-end planners, which may not integrate well with specialized geometric planners, SMS can serve as a plug-in semantic module for downstream manipulation or navigation policies. For mechanical search in closed-world settings such as shelves, we compare with a geometric-based planner and show that SMS improves mechanical search performance by 24% across the pharmacy, kitchen, and office domains in simulation and 47.1% in physical experiments. For open-world real environments, SMS can produce better semantic distributions compared to CLIP-based methods, with the potential to be integrated with downstream navigation policies to improve object navigation tasks. Code, data, videos, and the appendix are available: https://sites.google.com/view/semantic-mechanical-searc

    Learning to Efficiently Plan Robust Frictional Multi-Object Grasps

    Full text link
    We consider a decluttering problem where multiple rigid convex polygonal objects rest in randomly placed positions and orientations on a planar surface and must be efficiently transported to a packing box using both single and multi-object grasps. Prior work considered frictionless multi-object grasping. In this paper, we introduce friction to increase picks per hour. We train a neural network using real examples to plan robust multi-object grasps. In physical experiments, we find a 13.7% increase in success rate, a 1.6x increase in picks per hour, and a 6.3x decrease in grasp planning time compared to prior work on multi-object grasping. Compared to single object grasping, we find a 3.1x increase in picks per hour

    Can Machines Garden? Systematically Comparing the AlphaGarden vs. Professional Horticulturalists

    Full text link
    The AlphaGarden is an automated testbed for indoor polyculture farming which combines a first-order plant simulator, a gantry robot, a seed planting algorithm, plant phenotyping and tracking algorithms, irrigation sensors and algorithms, and custom pruning tools and algorithms. In this paper, we systematically compare the performance of the AlphaGarden to professional horticulturalists on the staff of the UC Berkeley Oxford Tract Greenhouse. The humans and the machine tend side-by-side polyculture gardens with the same seed arrangement. We compare performance in terms of canopy coverage, plant diversity, and water consumption. Results from two 60-day cycles suggest that the automated AlphaGarden performs comparably to professional horticulturalists in terms of coverage and diversity, and reduces water consumption by as much as 44%. Code, videos, and datasets are available at https://sites.google.com/berkeley.edu/systematiccomparison.Comment: International Conference on Robotics and Automation(ICRA) 2023 Ora

    Consumer Awareness and Adoption of One-Trip Travel Insurance: A Comparison among Generation X, Millennials and Generation Z

    No full text
    This research explores the awareness and adoption of one-trip insurance among different generational groups, namely Gen X, Gen Z, and Millennials. Utilizing a qualitative research design with purposive sampling and interview method of data collection, the study involved 24 participants, with eight individuals representing each generation. The findings of this study conclude that in-trip insurance is not a popular choice of security among most of the sample due to lack of awareness about the specific policy and insurance in general. Other barriers include cost, distrust in the system and utility of the insurance and false optimism. The significance of the study arises from the observed lack of awareness and the presence of negligence and false optimism among individuals regarding insurance options.
    corecore