200 research outputs found
Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude
Developing Freight Analysis Zones at a State Level: A Cluster Analysis Approach
The ability to forecast freight to support transportation infrastructure decisions is limited by data availability at a level of detail meaningful to the transportation planner. The Freight Analysis Framework Version 2 is a national, comprehensive public freight database. The difficulty that transportation planners encounter when using this data is due to extensive aggregation. In this paper, the authors develop a methodology for creating freight analysis zones (FAZs) at a sub-state level by partitioning a state into meaningful zones that support freight transportation planning and analysis. The authors conc
Macrodystrophia lipomatosa involving multiple nerves
Macrodystrophia lipomatosa (MDL), a rare congenital disorder, is considered by some to be a localized form of Proteus syndrome. The implication of the PTEN (phosphatase and tensin homolog deleted on chromosome 10) gene in both strengthens this belief. We present a case who had MDL in multiple nerve territories—all on the same side of the body—with hypertrophy of mainly fibroadipose tissue throughout their distribution, thus pointing to a form of localized hemihypertrophy; both hemihypertrophy and lipomatous tumors are components of Proteus syndrome
Hypoxia-inducible factor (HIF): fuel for cancer progression
Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygenindependent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors
Migration of superior vena cava stent
There has been a recent increase in the use of endovascular prostheses resulting in complex surgical and interventional complications not previously recognised. We report a case of Superior vena cava stenosis treated with a wallstent which migrated to the right atrium, necessitating a combined radiological and surgical approach to retrieve it
Bicyclic triterpenoid Iripallidal induces apoptosis and inhibits Akt/mTOR pathway in glioma cells
<p>Abstract</p> <p>Background</p> <p>The highly resistant nature of glioblastoma multiforme (GBM) to chemotherapy prompted us to evaluate the efficacy of bicyclic triterpenoid Iripallidal against GBM in vitro.</p> <p>Methods</p> <p>The effect of Iripallidal on proliferation and apoptosis in glioma cell lines was evaluated by MTS, colony formation and caspase-3 activity. The effect of iripallidal to regulate (i) Akt/mTOR and STAT3 signaling (ii) molecules associated with cell cycle and DNA damage was evaluated by Western blot analysis. The effect of Iripallidal on telomerase activity was also determined.</p> <p>Results</p> <p>Iripallidal (i) induced apoptosis, (ii) inhibited Akt/mTOR and STAT3 signaling, (iii) altered molecules associated with cell cycle and DNA damage, (iv) inhibited telomerase activity and colony forming efficiency of glioma cells. In addition, Iripallidal displayed anti-proliferative activity against non-glioma cancer cell lines of diverse origin.</p> <p>Conclusion</p> <p>The ability of Iripallidal to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further investigation into its role as a therapeutic strategy against GBM.</p
- …